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Abstract

In GAW20, we investigated the association of specific genetic regions of interest (ROIs) with log-transformed
triglyceride (TG) levels following lipid-lowering medication using epigenetic and genetic markers. The goal was to
incorporate kernels for cytosine-phosphate-guanine (CpG) markers and compare the kernels to a purely parametric
model. Post-treatment TG levels were investigated for post-methylation data at CpG sites and region-specific SNPs
and adjusted for pre-treatment TG levels and age, in independent individuals only (real data: n = 150; simulated
data, replicate 84: n = 111). In both data sets, our single-CpG-marker results using kernels and linear regression were
in good agreement. In the real data, we investigated the introns of the CPT1A gene previously reported as
associated with TG levels as separate ROIs, and were able to find hints of an association of cg17058475 and
cg00574958 with post-treatment TG levels. In the simulated data, we investigated a total of 10 regions, in which
the 5 causal and 5 non-causal markers lie, respectively, with increased methylation variances, yielding plausible
results for the 3 window sizes. Overall, this indicates that kernels for CpG markers are feasible. An interaction
regression model for the causal SNP with the nearest CpG marker identified an effect for the SNPs with the three
greatest heritabilities simulated. The simulation model assumed full SNP effect only for unmethylated regions
decreasing to zero in the case of full methylation. Thus, in the context of a clear candidate setting, interaction
between epigenetic and genetic data may enhance information, albeit nominally, even with small sample sizes.
Relieving the burden of multiple testing, developing kernels further to analyze data from multiple omics jointly is
well warranted.

Background
The human genome is a highly intricate system compris-
ing various genic and gene regulatory elements. Epigen-
etic intervention turns it into a jungle. High-throughput
technologies have been used to profile phenotypes in
multiple omics dimensions. In order to dissect complex
genomic traits, statistical tools need to handle a multitude
of markers both within and across such dimensions. The
kernel score test (KST) enables us to test a set of markers
for an overall association with a phenotype [1], such as

those markers within a region of interest (ROI). It highly
reduces the burden of multiple testing without simply
aggregating the data. KST can be applied to common and
rare variants, or adjusted for covariates and applied
to data of genome-wide association studies (GWAS),
epigenome-wide association studies, or sequence data
(where it was named the sequence kernel association
test [2]).
Our previous research [3, 4] focused on genetic data and

mainly on logistic regression. In the current analysis, we
focused on the use of the KST, employing methylation
markers to investigate a normally distributed drug re-
sponse in independent participants. In several regressions
we modeled post treatment log-transformed triglyceride
(post-lnTG) as a function of epigenetic and/or genetic
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markers or kernels thereof, adjusting for pre-treatment
log-transformed triglyceride (pre-lnTG) and age. We ini-
tially investigated the use of KST for epigenetic markers
alone and then with genetic markers. We analyzed
both the real and simulated data for a selection of
candidate ROIs.

Methods
Data
The GAW20 data were provided by the Genetics of
Lipid Lowering Drugs and Diet Network (GOLDN)
study [5], a longitudinal family-based study involving
991 participants of European descent to localize novel
loci contributing to triglyceride (TG) response in con-
nection with fat loading and fenofibrate treatment. Data
were collected at 4 time points: visits 1, 2, 3, and 4. We
performed a pre−/post-treatment analysis using only
visits 2 and 4, as the time between visits 1, 2 and 3, 4
was only one 1 day and the pre- and post-methylation
data were only recorded at visits 2 and 4. To normalize
distributions, TGs were log-transformed (pre-lnTG and
post-lnTG). In addition, we used post-methylation data,
GWAS data, and age.
GAW20 also provided simulated data using a family

structure and genotypes identical to those in the original
data. The answer sheet we were provided described the
simulation model. Post-treatment methylation levels
were modeled based on pre-methylation with a higher
variation at ten 10 CpG cytosine-phosphate-guanine
(CpG) markers than for all others. TGs were influenced
by five 5 causal SNPs with decreasing heritability and
several polygenes. However, the influence of each of the 5
causal SNPs on log TG change decreased with increasing
degree of methylation in that particular ROI. Five of the
10 CpG markers were those close to the causal SNPs. We
defined the corresponding region as causal ROI and the
other mentioned regions as non-causal ROIs.
Since we were focusing only on independent individ-

uals with available phenotypic and genetic/epigenetic
information, we only included exactly one member from
each pedigree. Hence, we included 150 individuals from
the real data and 111 individuals from the simulated
data of replicate 84.

Selection of ROIs
We first investigated models with and without kernels
with post-treatment methylation data. To define ROIs
for the simulated data, we consulted the GAW20 an-
swers for the 5 causal and 5 noncausal CpG markers
and associated SNPs to define 10 ROIs with the bound-
aries lying 0 kilobase pairs (kbp), 15 kbp, and 3 kbp
upstream and downstream of each of these 5 + 5 CpG
markers. In the real data, we formulated sets of CpG
markers in the CPT1A gene defined by intronic boundaries.

All the genomic information is in build hg18. After this we
began to investigate genetic markers and used the know-
ledge of the model for effect simulation.

Regression models and KST
To investigate the association of specific ROIs with
post-lnTGs, we employed linear and semi-parametric
kernel regressions, all adjusted for age and pre-lnTG.
In the KST, we used a linear kernel to transform the

available epigenetic (or genetic) information of the n
individuals into a similarity matrix K. This is calcu-
lated as K = ZZt, where Z is a n ×mu matrix for n in-
dividuals and mu markers of region u. It models a
linear effect of the considered markers on the re-
sponse Y. Let Y = (Y1,…,Yn) denote the post-lnTGs. Y
is modeled as:

Y ¼ XbT þ h Zð Þ þ ε ð1Þ

where X is the matrix for known fixed covariates, includ-
ing age and pre-lnTG; b is the vector of corresponding
regression parameters; and ε denotes the usual residuals.
The non-parametric function h(Z) depends on the n × n
dimensional kernel matrix K (for more details refer to
Schaid [1]). The KST investigates whether the epigenetic
(or genetic) covariance component h(Z) equals zero or
not. It is computed from maximum likelihood estimates
for the parameters of the null model. The p values were
calculated using Davies’ exact method [6] with the R
package CompQuadForm [7].
To investigate CpG markers only, we employed a

linear regression that included the marker itself, as well
as a kernel regression including a kernel for the ROI.
For this kernel, we used three different windows, all of
which included the CpG marker itself and windows of

Table 1 Simulated data: association of 10 candidate CpG markers
and their ROIs with post-lnTG adjusted for pre-lnTG and age

ROI CpG ID KST, Window Size Regression

±15 kbp ±3 kbp ±0 kbp

ROI-1 cg00000363 0.86 0.15 0.37 0.49

ROI-2 cg10480950 0.09 0.09 0.58 0.63

ROI-3 cg18772399 0.65 0.65 0.56 0.57

ROI-4 cg00045910 0.61 0.71 0.73 0.89

ROI-5 cg01242676 0.49 0.33 0.49 0.57

ROI-6 cg00703276 0.13 0.13 0.53 0.62

ROI-7 cg01971676 0.51 0.51 0.97 0.98

ROI-8 cg11736230 0.79 0.83 0.22 0.18

ROI-9 cg12598270 0.15 0.15 0.69 0.81

ROI-10 cg00001261 0.78 0.79 0.58 0.61

p Values were computed by KST with varying window sizes including the CpG
marker or by single-marker linear regression
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sizes ±0 kbp, ±15 kbp, and ± 3 kbp. After investigating
CpG markers only, we applied a linear regression includ-
ing the causal SNP marker x1 with its corresponding/
nearest CpG marker x2 and their interaction for the 5
causal SNP markers:

Y ¼ β0 þ β1x1 þ β2x2 þ β12 x1 � x2ð Þ þ covariates þ ε

ð2Þ

p Values are not adjusted for multiple testing. The
significance level is set to 5%. All analyses were per-
formed in R.

Results
Simulated data
We performed region-based KST and linear regression
to analyze the association of the post-treatment methyla-
tion in the 10 candidate ROIs with post-lnTG adjusted
for pre-lnTG and age. Table 1 lists the p values for the
kernel with the candidate CpG marker and windows of
sizes ±15 kbp, ±3 kbp, and ± 0 kbp, and for single-marker
regression analysis. Other than ROI-1, the results for the
KST with several CpG markers (±15 kbp, ±3 kbp) are
comparable. Furthermore, the results for a single CpG
marker (KST ± 0 kbp, simple regression) are also similar.
As to be expected from the simulation, no significant
associations were found.
Subsequently, we performed the KST that incorpo-

rated genetic information by employing the causal SNPs
nearest to the CpG markers considered above. As
expected, this did not yield significant associations (data
not shown). Lastly, for the 5 causal ROIs, we employed
the regression model defined by eq. (2) with causal SNP,
nearest CpG marker, and their interaction. Table 2
presents the results. We found nominally significant as-
sociations for the first three SNPs in ROI-1, ROI-2, and
ROI-3. The SNPs rs9661059, rs736004, and rs1012116
had the greatest heritabilities of the 5 causal SNPs (see

GAW20 answers). These effects could only be detected
by including the nearest CpG marker. Three significant
main effects (for rs9661059, rs736004, and rs1012116)
and two significant interaction effects were found
(Table 2). Our results are in good coherence with the
simulation setup of GAW20, in which the effect of the
causal SNP is at a maximum in an unmethylated region
and decreases as the degree of methylation in the region
increases.

Real data
We analyzed the introns of the CPT1A gene. Table 3 pre-
sents all the results. Intron 1 includes the CpG markers
previously reported as associated with (baseline) TG [5].
Thus, we investigated single CpG markers of that intron
and found two hints for associations with post-lnTG for
cg17058475 and cg00574958 (Table 4). Again, the KST and
single marker linear regression are in good agreement.

Discussion
In this analysis, the small sample size that results from
using only independent individuals limits our power.
Nevertheless, we were still able to detect nominally sig-
nificant associations for 3 of the 5 causal SNPs from the
simulation employing a model of interaction with their
nearest CpG marker. We also found hints for association
of cg17058475 and cg00574958 in intron 1 of the
CPT1A gene with TGs in the real data by employing
KST and the linear regression model. The GOLDN study
also reports cg17058475 and cg00574958 are also re-
ported by GOLDN study to be as associated with TGs
and cg00574958 as correlated with CPT1A expression
[5]. Working on the simulated data, we investigated
CpG markers in 10 ROIs. A region several kbp in size
contains far fewer CpG markers than SNP markers. We
revealed for the KST that the window size 0 kbp is
similar to linear regression and higher window sizes are
similar to each other, yet different from 0 kbp. As no dir-
ect CpG effect was modeled, no additional conclusions
can be drawn. However, the application of the kernel
proves feasible with CpG markers, and not only with
genetic markers [3, 4]. Here the use of the kernel is not
crucial, as the effect was only given by a simulation
model for the causal SNP and the nearest CpG marker,
not involving other markers in the region.
The most common design for a treatment-response

study is a cohort design with independent people that re-
quires individuals to take the treatment. This might often
be unethical for families as a whole (albeit reasonable in

Table 2 Simulation data: association of 5 causal SNPs and their
nearest CpG marker with post-lnTG, adjusted for pre-lnTG and age

ROI CpG ID SNP ID CpG Marker SNP CpG × SNP

ROI-1 cg00000363 rs9661059 0.0846 0.0187 0.0484

ROI-2 cg10480950 rs736004 0.0192 0.0237 0.0192

ROI-3 cg18772399 rs1012116 0.1447 0.0367 0.1933

ROI-4 cg00045910 rs10828412 0.9252 0.4915 0.9708

ROI-5 cg01242676 rs4399565 0.0649 0.3519 0.0756

p Values of interaction model Eq. 2

Table 3 Real data: association of sets of CpG markers in 14 introns of the CTP1A gene with post-lnTG, adjusted for pre-lnTG and age

Intron number(Int) Int1 Int3 int 4 Int5 Int 6 Int7 Int 9 Int10 Int12 Int13 Int14

p Value 0.08 0.74 0.03 0.76 0.95 0.46 0.12 0.09 0.01 0.46 0.59

p Values computed by KST
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the GOLDN study). As we wanted to see the behavior of
kernels and regression in this general context, we opted to
focus on unrelated individuals. Our strategy can be
adapted for family data. In GAW19, we used KST on
family data by introducing a design matrix—ZcT in
Eq. (1)—where random effects c caused by familial
polygenic background are adjusted for Y and Y =
XbT + ZcT h(Z) + ε (for more details, see Malzahn et al.
[3]). Several GAW20 contributions to this volume used
the theoretical or the estimated kinship matrix to con-
struct the random effect in a linear mixed model.

Conclusions
Our analysis with multi-omics data in a linear regression
interaction model in comparison to single omics data in
KST and linear regression framework emphasizes that
careful integration of multi-omics data might enable re-
searchers to explain a greater proportion of the variance
in complex traits, even in small samples. Consequently,
it would seem highly warranted to extend kernels to
incorporate multiple types of omics data.
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CpG ID KST Regression
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cg09737197 0.271 0.276

cg17058475 0.047 0.048

cg01082498 0.285 0.290

p Values computed by KST and single-marker regression
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