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Abstract
We proposed a confidence interval method for disease gene localization by testing every position
on each chromosome of interest for its possibility of being a disease locus and including those not
rejected into the interval. Three test statistics were proposed to perform the tests, including one
based on LOD and two generalized likelihood ratio tests with or without model averaging (GLRT/
MA and GLRT). For the statistic based on LOD, an integrated procedure was proposed with an
adaptive and an importance sampling component. We also proposed asymptotic approaches based
on GLRT and GLRT/MA as alternatives that are much more efficient computationally but depends
on the reliability of the limiting distributions. Besides its efficiency, the asymptotic procedure based
on GLRT/MA also takes model uncertainty into consideration. Applications of these methods to
the Genetic Analysis Workshop 15 (GAW15) rheumatoid arthritis data from the French
population gave results that successfully captured the well recognized susceptibility gene HLA*DRB1
to a less than 6 cM, 99% confidence interval with the two asymptotic approaches.

Background
With the advances in molecular biology, more and more
genome-scan data are available for linkage studies. Even
in a preliminary genome scan, there is a need to localize a
disease gene to as small a chromosomal region as possible
without missing the signal of a true disease locus. The
LOD support interval approach tends to undercover dis-
ease loci unless the linkage signal is extremely strong, and
may be further complicated by the difficulty of choosing
an appropriate threshold to account for multiplicity
adjustment. Lin et al. [1] proposed a confidence set infer-
ence (CSI) approach, wherein a confidence interval of a

disease locus can be deduced based on the confidence set
of markers that are within a preset distance from the dis-
ease locus. This approach also alleviates the problem asso-
ciated with multiple testing.

In this study, instead of deducing a confidence interval, by
efficiently testing every position on the chromosome, we
obtained a confidence interval of a disease locus with a
couple of strategies based on three different statistics that
are applicable to general pedigree data. Investigation of
the performance of the new approaches by simulation
showed that they worked well even when there were only
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moderate linkage signals. Because initial genome scan for
the rheumatoid arthritis data provided by Genetic Analy-
sis Workshop 15 (GAW15) showed moderate to strong
linkage signals on chromosome 6, we applied our meth-
ods to the three data sets with microsatellite (MS) markers
on that chromosome. We compared our results with the
traditional 1-LOD and 3-LOD support intervals.

Methods
The hypothesis, test statistics, and confidence set
Suppose there is a chromosomal region of length C with
at most one disease gene in it. We want to localize the
gene, if it exists, by constructing a confidence set of its
locus with coverage probability p such that the exclusion
of the true disease locus on the map from the confidence
set is controlled at level α = 1 - p. Because we can only
make a type I error at exactly one of the excluded posi-
tions, if there is a disease gene on the map, no multiplicity
adjustment is needed [1]. By the duality of confidence set
and hypothesis testing, this is equivalent to testing the fol-
lowing hypothesis for every position on the chromosome
at level α:

H0:d = d0 vs. Ha:d ≠ d0,

where d is the true but unknown map position of a disease
gene on the chromosome, and d0(d0 ∈ [0, C]) is the tested
map position.

The LOD score, the conventionally used measure of sup-
port for linkage versus absence of linkage, can be utilized
as a test statistic here, denoted by λd0:

λd0 = log10L(d0)/L(∞) = LOD(d0).

Two alternative test statistics (GLRT: λ*d0 and GLRT/MA:
λMA

d0) that are generalized likelihood ratio based can also
be used:

λ*d0 = -2LnL(d0)/L( ) = 4.6[LOD( ) - LOD(d0)], and 

λMA
d0 = EM[λ*d0] = 4.6[MALOD( ) - MALOD(d0)],

where LOD( ) is the maximum LOD score maximized

over [0, C] as well as when d is off the map (d = ∞). The
model averaging LOD score MALOD is defined as

which is an average of LOD scores over a set of S disease
models (Mi values) compatible with the data. More specif-
ically, the set of disease models considered are those that
are consistent with the identical-by-descent (IBD) proba-

bilities estimated at the hypothesized trait locus or their
perturbations. Such a setup not only accounts for model
uncertainty associated with the estimated IBDs but also
the uncertainty associated with the estimation of the IBDs.
The weights assigned to the models, P(Mi), are bimodal,
with those obtained from the IBD estimates getting a
larger weight than those from the perturbations. More
details can be found in Wan [2].

A confidence set of the disease locus is then constructed by
including all of the positions not rejected. Because the dis-
tribution of any of the three test statistics under H0 cannot
be found analytically, we used simulation or asymptotic
distribution to approximate this null distribution. For the
simulation-based approach, data from multiple markers
are simulated simultaneously conditional on the affection
status and pedigree structure at each hypothesized disease
position d0. Based on the simulated marker data, the null
distribution at that hypothesized position is constructed
by a Monte Carlo estimate. The test statistic λd0 is then
compared to the null distribution to determine whether
d0 should be included in the confidence set. It is worth
emphasizing that at each hypothesized disease position,
all marker data (multipoint) are simulated, regardless of
the marker interval in which the hypothesized disease
locus lies. Because there are an infinite number of putative
disease loci to be tested, a practical strategy is needed to
discretize the chromosome so that only a finite number of
positions need to be tested without compromising the
level of coverage. To further improve the computational
efficiency of this simulation-based procedure, an impor-
tance sampling (IS) component was also proposed. In the
following we describe the integrated procedure and the
asymptotic approaches.

An integrated procedure based on LOD
We begin with a broad search of chromosomal regions to
be included in or excluded from the confidence set. This
broad search strategy is being referred to as our adaptive
component of the integrated procedure. Specifically, the
chromosome of interest is divided by the genetic markers,
and each interval is considered in turn. For each such
chromosomal segment, we divide it into two equal halves.
For each half, we test the two end points (L and R) and the
mid-point (M), and make inference about whether L-M,
and/or M-R should be included in/excluded from the con-
fidence set based on properties of the LOD scores, such as
unimodality between two markers [2,3]. If inclusion/
exclusion decision cannot be made on an interval (L-M or
M-R), it is further divided into two equal halves until
either a decision about inclusion/exclusion can be made
or the length of the segment is less than a preset threshold.

One could have set the threshold to be sufficiently small
so that interpolation based on the two end points of any
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remaining undecided segment would lead to a coverage
probability close to the nominal. However, this would be
a computationally inefficient procedure due to the need
of constructing a large number of simulated null distribu-
tions. Instead, we used a relatively coarse grid (leading to
a threshold of 1 cM) in the adaptive step and adopted an
importance sampling strategy to further refine the remain-
ing segments (all smaller than the threshold) without any
additional simulation. Specifically, suppose d0 is an inte-
rior point of one of such segments with the left end point
being dL. We would like to test the hypotheses in Eq. (1)
to determine whether d0 should be included in the confi-
dence set. Let

X = LOD(d0) = log10(P(G|D = d0)/P(G|D = ∞))

denote the random variable corresponding to the LOD
score hypothesizing the disease at position d0, where G is
the collection of genotypes of all the individuals at all the
marker loci. Then the c.d.f. of X can be written as:

Thus, the c.d.f. of the LOD score at d0 can be estimated by

which makes use of the N sets of simulated marker data
(Gi values) with the disease locus hypothesized to be at dL.

Note that these simulated marker data are available from
the adaptive component step, and thus no additional sim-
ulations are needed. The importance sampling weight,
P(Gi|D = d0)/P(Gi|D = dL), can be shown to equal to

 after some algebra, and thus can be
easily calculated. We then proceed to test the inclusion/
exclusion of d0 based on this estimated null distribution.

Our simulation study [2] indicated accurate estimation
with substantial gains in computational efficiency
because no additional simulations are needed to estimate
distributions at all interior points of a segment after the
adaptive step. Additional efficiency can be gained by using
the simulated marker data at the right end point as well
[2].

Asymptotic approaches based on GLRT and GLRT/MA

When the sample size is moderate or large and/or when
the family structure is not extremely heterogeneous, we
can approximate the null distribution of the GLRT by a

 distribution. Thanks to its computational efficiency,

one can further take model uncertainty into account by

considering the test statistic GLRT/MA, where we approx-
imate its limiting distribution by a weighted sum of inde-

pendent  values, with a cautionary note that the actual

asymptotic distribution may be more complicated due to

the dependency of the component  values.

Results
We applied both the integrated procedure and the asymp-
totic method, with or without model averaging, to the
rheumatoid arthritis data from GAW15. Three popula-
tions are available with MS marker data, namely the
French (FR), North American Rheumatoid Arthritis Con-
sortium (NARAC), and United Kingdom (UK), where the
NARAC data consist of general pedigrees and the other
two sets are of nuclear families. Prior information showed
that there was a well recognized susceptibility gene
HLA*DRB1 on chromosome 6. Thus, we focused on chro-
mosome 6 and analyzed those three sets of data individu-
ally both at 95% and 99% confidence levels. For each
population, we performed the analysis using two disease
models inferred from each of the data sets. We also
applied the two disease models inferred from the NARAC
data to the FR data (segment 1 of Table 1), and recipro-
cally, we utilized those two inferred from the FR data to
the NARAC data (segment 2 of Table 1). For the asymp-
totic approach with model averaging, the disease models
being averaged over included those that are consistent
with the estimated IBD probabilities and their perturba-
tions. Details of the disease allele frequencies and their
penetrances are in Table 1, which shows the performance
at 99% confidence level and that of the 3-LOD intervals.

Of all three data sets, the 99% integrated procedure and
the asymptotic methods successfully captured the
HLA*DRB1 locus with at least one of the disease models.
All 99% model averaging methods gave intervals contain-
ing the HLA*DRB1 locus. Specifically, when there are
strong linkage signals as in the NARAC data (maximum
LOD scores around 13), at 99% confidence level, our
asymptotic methods gave results with shorter length com-
pared to those from the 3-LOD method. Even when there
are only moderate signals as in the FR data (maximum
LOD around 2.8), at 99% confidence level, the integrated
method and the asymptotic methods with or without
model averaging all yielded confidence intervals (from 5
to 20 cM) containing the disease locus compared to the
null set from the 3-LOD method (Figure 1). Analyses of
the UK data also lead to the capturing of the disease locus
in all methods, but with lengthier intervals.

Overall, the 95% and 99% asymptotic methods tended to
give shorter interval length compared to the correspond-
ing 1-LOD and 3-LOD support intervals when both cap-
tured the susceptibility gene. Our methods worked well in
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most cases, especially when there were moderate linkage
signals, such as in the FR data, when the two asymptotic
procedures successfully captured the HLA locus to a less
than 6-cM 99% confidence region compared to the null
set from the 3-LOD support interval approach.

Discussion
In this paper, we propose three statistics and computa-
tional procedures for constructing a confidence set of a
disease locus. From our simulation studies [2], the inte-
grated procedure based on the LOD statistic tends to give
correct coverage probability and is applicable even when
there are minimal linkage signals. The asymptotic method
with or without model averaging also works well when
there are moderate linkage signals. For example, for the FR
data, the model averaging approach localized the putative
gene to a 5.29-cM 99% confidence region. When linkage
signals are really strong, the integrated procedure tends to
give a confidence interval of longer length than the
asymptotic methods, when both covered the putative
gene, as seen from the application to the NA data. Because
the sample size of the NARAC data is large (511 complex

families), our asymptotic method with model averaging
seemed to work better, giving shorter intervals than its 1-
LOD or 3-LOD counterparts. Moreover, the model averag-
ing method is computationally efficient and takes into
account of uncertainty in disease model selection. The UK
data also have strong linkage signals with a maximum
LOD of around 6. However, because the markers around
the HLA locus are not very polymorphic and have large
inter-marker distances, the integrated method gave wide
confidence intervals if the intervals captured the suscepti-
bility gene at all. In this sense, more typed single-nucle-
otide polymorphisms (SNPs) or MS markers at the region
of interest may be helpful in refining the confidence inter-
val. Still, the model averaging method worked relatively
well in this case, localizing the susceptibility gene to a 27-
cM region. Lastly, due to the computational intensity of
the integrated procedure, we presented results only for MS
marker data here to compare the performance of our
methods with the more traditional k-LOD method. With
more abundant SNP data now available, the computa-
tionally efficient GLRT or GLRT/MA asymptotic procedure
would be more applicable.

Table 1: 99% confidence intervals (CIs) from various proceduresa

GLRT/Asymptotic

Pop. Modelsb (PA, faa, fAa, fAA) LOD/Integrated With MA Without MA 3-LOD

FR FR1 11.36* 5.29* 5.71*
(0.05, 0.031, 0.045, 0.810) (42.10, 63.00) (43.46, 48.75) (43.45, 49.16) Null
FR2 18.85* 11 modelsc 5.70*
(0.08, 0.030, 0.033, 0.523) (40.75, 63.55) (43.13, 48.83) Null
NARAC1 18.28* 14.84*
(0.10, 0.032, 0.276, 0.920) (41.55, 70.87) (41.41, 62.59) Null
NARAC2 19.33* 12.36*
(0.15, 0.020, 0.216, 0.695) (40.75, 63.55) (41.36, 61.41) Null

NARAC NARAC1 12.78 12.50* 13.10* 24.16*
(0.10, 0.032, 0.276, 0.920) (35.76, 57.96) (36.21, 52.56) (35.87, 52.76) (34.02, 58.18)
NARAC2 20.23* 38 modelsc 11.97* 22.82*
(0.15, 0.020, 0.216, 0.695) (34.98, 60.62) (36.39, 52.36) (34.44, 57.26)
FR1 5.46 12.88
(0.05, 0.031, 0.045, 0.810) Null (35.20, 40.66) (28.90, 41.78)
FR2 5.85 19.04
(0.08, 0.030, 0.033, 0.523) Null (35.01, 40.86) (29.50, 52.17)

UK UK1 50.56* 27.65* 27.47* 40.18*
(0.12, 0.014, 0.093, 0.504) (34.20, 87.58) (43.06, 72.51) (41.60, 69.07) (38.68, 78.86)
UK2 19.47 15 modelsc 26.27* 38.54*
(0.09, 0.025, 0.065, 0.830) (58.83, 78.58) (44.59, 74.04) (40.58, 79.12)

aFor each model and method, we give the length of the confidence set in cM, with a "*" to signify those that contain the HLA*DRB1 locus. We also 
provide the convex set of the confidence set below the length. For the GLRT/asymptotic procedure with MA, the number of models accounted for 
is also provided, below the convex set. The 3-LOD intervals are treated as approximate 99% CI [2].
bModels {FR1, FR2}, {NARAC1, NARAC2} and {UK1, UK2} are the models consistent with IBD estimates for the FR, NARAC, and UK data, 
respectively. A is the disease allele and a the normal allele.
cModels for GLRT/MA are inferred from the IBD estimates at the trait locus and their perturbations. They included the models explained in 
footnote b for individual analysis.
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In conclusion, the GLRT/MA asymptotic procedure is rec-
ommended if the sample size is sufficiently large, such as
in the GAW data, because it can easily take model uncer-
tainly into account with little additional computational
cost. However, when the sample size is relatively small,
the asymptotic properties may be questionable, which can
lead to shorter confidence intervals with coverage proba-
bility lower than its nominal [2].
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99% Confidence intervals of French dataFigure 1
99% Confidence intervals of French data. The 99% con-
fidence intervals for rheumatoid arthritis data (French popu-
lation) analyzed by model FR2. Dashed vertical line is at the 
HLA*DRB1 locus. *Interval from integrated procedure is a 
convex set of the original non-contiguous intervals.
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