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Abstract

Bayesian methods continue to permeate genetic epidemiology investigations of genetic markers
associated with or linked to causal genes for complex diseases. The attraction of these methods is
an ability to capitalize on Bayesian priors to model additional complexity and information about the
disease outside the specific data analyzed. It is well known that the larger the sample size, the more
the Bayesian method with uninformative priors can be approximated by its Frequentist analogue.
However, what is not known is how much impact the priors have on a Bayesian method when
analyzing a null region of the chromosome. Here, we look at the impact of various prior values on
stochastic search gene suggestion (SSGS) when analyzing a region of simulated chromosome 6
known to be unassociated with the simulated disease. SSGS is a recently developed Bayesian
variable selection method tailored to investigate disease-gene association using case-parent triads.
Our findings indicate that the prior probability values do affect false positives, and this study
suggests values to calibrate the prior. Also, the sensitivity of the results to the prior probability
values depends on two factors: the linkage disequilibrium between the marker loci examined, and
whether this dependence is included in the model. In order to assess the null distribution we used
the simulated data with the "answers" known.

ence regarding the current data set. It is well known that

Background
with Bayesian methods, the more data that is collected,

With the advancement of computers over the past few

decades comes a rise in the application of Bayesian meth-
ods and Markov-chain Monte Carlo methods (MCMC) to
genetic data (see [1-6] for examples). Many of these
MCMC methods capitalize on Bayesian priors to model
additional complexity in the problems facing complex
disease mapping. Bayesian priors allow prior information
about the loci in question to statistically enter the infer-

the less impact the prior has. Also, using uninformative
priors when modeling large data sets generate posteriors
that can be approximated by the same asymptotic normal
distribution of the corresponding maximum likelihood
estimates [7], leading to Bayesian and Frequentist agree-
ment under these conditions.
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But how do Bayesian methods behave when there is not a
gene to find? Or, what impact does the prior have on
inference if, in reality, there are no genes to find? We use
simulated data of Problem 3 for the Genetic Analysis
Workshop 15 to evaluate the performance of stochastic
search gene suggestion (SSGS), a Bayesian method intro-
duced by Swartz et al. [3], in a region of chromosome 6
with no association to disease.

Methods

SSGS combines hierarchical priors to model alleles within
loci with the conditional logistic regression likelihood to
model the probability of transmission to a diseased child
in case-parent triad data. The full details are given in
Swartz et al. [3], and we give a brief overview of the
method here.

To review the likelihood, we first define our notation: D+
denotes a child is affected; g = (g, &) denotes the child's
genotypes, with each element subscripted with m denot-
ing transmitted from the mother, and f denoting transmit-
ted from the father; G, denotes the parental genotypes.
Then, given the parents G,, and G the probability of
transmitting genotype g to the affected child is given by
[3,4,8]:

RR[ (g7 ) ]
)y RR[(gfn,g*f)}

g*|Gm /Gf

P(g | D*, Gy Gy ) =

7

where g*|G,,, G,represents all possible pairings of trans-
mitted and non-transmitted alleles consistent with the
parental genotypes and RR [(g,, 8] is a relative risk func-
tion defined previously as a conditional logistic regression
function [3].

Using generalized transmission-disequilibrium test
(GTDT) coding as described by Schaid [8], we must omit
a reference allele for model identifiability. Using calcula-
tions from Thomas et al. [4], we select the most prevalent
allele as our reference allele. Then, using /= 1,..., L to index
the loci, and a = 1,..., Ar1 to index the alleles within a
locus (and A, denotes the maximum number of alleles at
locus 1), each g, refers to an allele main effect for allele a
at locus I, with the usual interpretation as the log relative
risk for transmission to the case. Note that using GTDT
coding assumes additive allelic effects [3].

Next, we assume a multivariate normal prior for the main
effects, and hierarchical latent indicators to stochastically
search through the main effects that impact the probabil-
ity of transmission [3,9]. We denote the first latent indica-
tor as the vector A = (4,,..., 4;). Each element of 1 has a
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Bernoulli distribution with probability p, where p; is the

prior probability that locus [ is associated with the disease.
Similarly, we define a partitioned allele indicator vector,

conditional on the loci selected as a|A = («;,..., &) with
each partition a; = (all,...,alAl_l ) indicating the alleles

at locus | associated with disease, and each element in ¢,
has a Bernoulli distribution with probability ¢, as its
prior, where ¢, is the prior probability that locus I and

allele a at locus I are associated with the disease. This dual
hierarchical prior structure restricts the stochastic search
to models that select alleles within loci.

Conditional on the indicators, we can define the prior for
main effects. Let y, = 4,¢,. Therefore, yindicates the allele
main effects when both the locus and allele are indicated.
We can define the conditional prior for the coefficients,

Bly, as

7 (B7) = MVN (0, D,RD,),

where Dy=Diag(kll,...,klAl_l,...,kLl,...,kLAl_l), where

each k;, is defined as

kl _ {Clafla
a — .
T, ify, =0,

if Yia =1

where ¢ is large, 7 is small, and R is either an identity
matrix or a covariance matrix defined by genetic correla-
tion. (For more details concerning ¢ and rand the flexibil-
ity of SSGS using these parameters, see Swartz et al. [3]
and references therein.)

To define R, we start with a blocked matrix, L, whose diag-
onal blocks represent within loci covariance and off-diag-
onal blocks represent between loci covariance [3]. We
model the within-locus covariance by modeling the prob-
ability of an allele's presence as a multinomial distribu-
tion. The covariance is then defined in the usual way for a
multinomial distribution, using the normalized allele fre-
quencies as cell probabilities for the distribution. To
model between locus covariance, each element is simply
the allele-wise linkage  disequilibrium
By = Pisjy
defined, we set R = L-1. More details are given in Swartz et
al. [3].

value:

= pi,pj, - Once the elements of the blocks are

Our posterior distribution is intractable, and therefore, we
use MCMC simulations to sample from the posterior dis-
tribution. The parameters A and « can be calculated using
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a Gibbs sampler, while the g values are updated by locus
using a multivariate Metropolis Hastings step [3]. Soft-
ware to implement SSGS is available at http://www.epige

netic.org/Linkage/ssgs-public/.

We are mainly interested in the marginal posterior of the
7%, Values given the data. We use the proportion of itera-
tions for each y, = 1 to estimate the posterior probability
of each allele being associated with transmission to the
case. Once the posterior probabilities are calculated, we
use the median model decision rule developed by Barbieri
and Berger [10]: select genes with posterior probability of
inclusion greater than or equal to 0.5.

Recall that conditional logistic regression models the
probability of transmission to the affected offspring, and
can include other covariates, such as environmental fac-
tors in the model. We compare SSGS with the TDT, imple-
mented in TDTEX program in the Statistical Analysis for
Genetic Epidemiology release 5.0 (SAGE 5.0) [11]. TDTEX
performs McNemar's test of counts of transmitted versus
non-transmitted alleles, which is a powerful ;2 text of
association that cannot include additional covariates.

Data analysis

We chose to analyze families from Replicates 1 and 2 of
Problem 3. Because this method requires case-parent tri-
ads, we randomly selected one of the affected sib pairs to
be the case. We analyze the first 250 families from both
replicates, focusing on six microsatellite markers from
simulated chromosome 6: markers 35 to 40. This gave us
a total of 59 alleles from Replicate 1 and 57 alleles from
Replicate 2. By looking at the answers of the simulation in
advance, these markers are far enough away from any of
the disease-associated loci to be assumed independent of
the disease locus. We analyze these markers under four
different prior model specifications. We use the same val-
ues for p; and ¢, as in the sensitivity analysis combined
with either using the identity matrix or defining the
dependence structure in R as a function of allele frequen-
cies and linkage disequilibrium as in Swartz et al. [3]: 0.5,
0.25, 0.1, 0.01. Additionally, we compare the results from
SSGS with standard inference from conditional logistic
regression using Stata 8 and the TDT as implemented in
TDTEX.

In order to evaluate the method in the presence of a signal,
we performed a second analysis of all four methods men-
tioned above, applied to markers closer to the simulated
DR locus, a gene locus involved in increasing risk for the
disease. Using the same algorithm as described for the
simulated microsatellites [12], we generated three dense
microsatellites using the dense single-nucleotide poly-
morphisms (SNPs) from chromosome 6 at the following
locations: 1) 48.40 cM, 2) 49.44 cM, and 3) 51.52 cM.

http://www.biomedcentral.com/1753-6561/1/S1/S113

(When constructing the microsatellites, we omitted the
SNP located exactly on the DR locus.) From the "answers",
we know that dense microsatellite 2 is the closest to the
DR locus. Because the simulated signal was so strong, we
only used data from Replicate 1 for this analysis.

For these sets of markers, by using the 250 families, not all
alleles appeared in our sample, and some alleles had very
low frequencies in our sample. Therefore, we considered a
minor allele (MA) as any allele with less then a frequency
of 4% in our sample, and pooled them to one pseudo-
allele. If the pseudo-allele still had less than 4% frequency
after pooling the MAs, we then pooled the MA with the
least frequent allele with frequency greater than 4% in the
data set.

Results

Using an alpha of 0.05, the conditional logistic regression
indicated five alleles from Replicate 1, and seven from
Replicate 2. However, after adjusting for multiple testing
using Benjamini and Hochberg's FDR method [13], no
alleles were significant from either replicate. In Table 1,
we report the false-positive rate for SSGS using the identity
matrix for R. In the first column of Table 1, we report the
prior probability of inclusion. Then for each replicate, we
report the posterior probability of each locus selected,
p(A|data) > 0.5, and the number of alleles selected (each
allele with p(y{data) > 0.5). When we used 0.5 prior prob-
ability of inclusion (p = g = 0.5) we detected 3 of 59 alleles
as significant from Replicate 1, and 5 of 57 from Replicate
2, giving an empirical false-positive rate of 7%. When we
reduced the prior probability to 0.25, only one allele from
Replicate 1 was selected, reducing the rate to 1%, and
when we used prior probabilities less than 0.25, no signif-
icant loci were detected. Using a covariance structure
defined by allele frequencies and linkage disequilibrium
for R, SSGS did not find any false positives for any prior
values of p and ¢q. TDTEX from SAGE 5.0 indicated Locus
37 with a p-value of 0.009 from Replicate 2, which
remained significant after implementing the FDR correc-
tion. Therefore, conditional logistic regression combined
with the FDR correction and SSGS including a depend-
ence structure were the most accurate, while SSGS without
including a dependence structure performed acceptably
for some values of the prior.

The methods ranked differently when analyzing the dense
microsatellite loci. SSGS without including a dependence
structure indicated all alleles at dense microsatellite Locus
2, having posterior probability for all alleles greater than
99% across all prior values of p and ¢, yet did not indicate
any alleles at dense microsatellite locus 1 or 3. The condi-
tional logistic regression maximum-likelihood estimates
also indicated all alleles at dense microsatellite 2 with p-
values less than 0.001, without indicating any alleles for
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Table I: Loci suggested by SSGS for varying prior probabilities of inclusion using the R = Identity Matrix

Replicate | Replicate 2
Prior (p =q) Locus  Posterior locus probability No. alleles indicated ~ Locus Posterior locus probability No. alleles indicated
0.5 40 0.96 3 40 0.88 3
38 0.66 2
0.25 40 0.85 | No loci or alleles had greater than 0.5 posterior probability
0.1 No loci or alleles had greater than 0.5 posterior probability
0.0l No loci or alleles had greater than 0.5 posterior probability

Loci 1 or 3. When incorporating covariance structure
defined as a function of allele frequencies and linkage dis-
equilibrium through R, SSGS only indicated one allele at
dense microsatellite 2, (allele 14) with posterior probabil-
ity of 64% when the prior values for p and g were set equal
to 50%. For other smaller values of prior probabilities p
and ¢, SSGS did not indicate any alleles at any loci. TDTEX
indicated both dense microsatellite 2 (p-value < 3.3 x 10
28) and dense microsatellite 3 (p-value < 0.024) to be asso-
ciated with the simulated disease locus. Here, at some
point, all four methods found the marker closest to the
disease locus. However, SSGS excluding a dependence
structure and the conditional logistic regression gave the
strongest evidence for the location of the disease locus,
defining the narrowest region; while SSGS including the
dependence structure gave the weakest signal, and was
also the least robust to different prior probabilities.

The results of this paper differ from the results of our pre-
vious work [3]. Previously, we concluded that including
the dependence structure in the model was best. However,
in these data sets, we see that excluding the dependence
structure performed better than including it when looking
for a signal. So why did the dependent prior do so well in
our previous research? To answer this question we looked
at the LD pattern between markers among the dense mic-
rosatellites. When looking at the D' values for the dense
microsatellites (calculated by ldmax [14]), we found that
the LD falls in the range of 0 to 0.24. Meanwhile, the D'
values (again calculated by ldmax) for the data for our
previous work [3] was much higher with values ranging
from 0.25 to 0.52. Therefore, we see a greater improve-
ment gained by including a covariance structure that is a
function of allele frequencies and LD when the LD
between markers is higher.

Conclusion

We have revealed important features for SSGS, a new
method introduced in Swartz et al. [3]. We found that in
null regions, SSGS can be sensitive to the magnitude of
prior probability of inclusion, especially when not includ-
ing dependence structure in the model. To calibrate the

prior, this study suggests using a prior probability of inclu-
sion of 0.25 to control for false positives, while not erro-
neously excluding true loci. In general, we showed that
using smaller prior probability of inclusion for loci and
alleles reduces false-positive values, particularly in null
regions. Most importantly, we found that the usefulness
of including genetic dependence between markers in the
model depends on the amount of LD between the mark-
ers. Therefore, before including the dependence structure
in the matrix, it is very important to examine the LD pat-
tern between the marker loci. If the D' values for the mark-
ers is less than 0.25, then incorporating a covariance
structure based on the LD seems to shrink the signal dras-
tically toward the null and increase the sensitivity to the
prior probabilities of inclusion. Therefore, it is better to
exclude the dependence structure from the model when
using SSGS to minimize false positives in null regions.
However, if the LD between the markers is high (greater
than 0.25), as in those analyzed in Swartz et al. [3], we see
a clear advantage in including dependence structure based
on LD into the model.
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