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Abstract

Given the increasing size of modern genetic data sets and, in particular, the move towards genome-
wide studies, there is merit in considering analyses that gain computational efficiency by being more
heuristic in nature. With this in mind, we present results of cladistic analyses methods on the
Genetic Analysis Workshop |5 Problem 3 simulated data (answers known). Our analysis attempts
to capture similarities between individuals using a series of trees, and then looks for regions in
which mutations on those trees can successfully explain a phenotype of interest. Existing varieties
of such algorithms assume haplotypes are known, or have been inferred, an assumption that is often
unrealistic for genome-wide data. We therefore present an extension of these methods that can
successfully analyze genotype, rather than haplotype, data.

Background

In this paper we adopt a cladistic approach to association
mapping. Such methods were first introduced by Temple-
ton et al. [1], but other researchers have subsequently
developed the ideas of that paper, or used other cluster-
based approaches [2-4]. The methods are based upon
haplotype, rather than single-nucleotide polymorphism
(SNP)-by-SNP analysis. As the density of SNPs in current
data sets increases, neighboring SNPs increasingly exhibit
linkage disequilibrium (LD). A SNP-by-SNP analysis
ignores this property, whereas a haplotype-based analysis
directly exploits it.

However, the fact that current cladistic analysis methods
act upon haplotype rather than genotype data also intro-
duces a problem. Data are increasingly being collected for
large numbers of SNPs, frequently via a SNPchip for
which data on hundreds of thousands of SNPs might be
collected. For such data, haplotype phase information is
typically unavailable. The common approach to dealing
with this (in a multi-locus analysis) is to infer haplotype
phase and then perform an association study on these
inferred haplotypes. However, the inference of haplotype
phase is highly computationally intensive, with the better
algorithms proving unable to infer phase in data sets con-
taining SNPs on the order of thousands, rather than tens
or hundreds. Such an approach is therefore completely
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impractical in large data sets (although we note, with
interest, the recent development of fastPHASE [5]).

To circumvent this issue we propose a greedy approach in
which, whenever pairs of genotypes are compared, the
haplotypes of those individuals are assigned in a deter-
ministic way so as to maximize the measure of haplotype
similarity between those individuals. We then follow this
with a cladistic analysis based upon CLASS, a cladistic
association method used in, for example, Zhao et al. [6].
Our greedy assignment of haplotype phase has the merit
of being computationally very simple. Thus, it allows the
use of cladistic methods such as those above on genotype
data without introducing an extreme computational bur-
den. On the flip side, the method is heuristic, and there-
fore very unlikely to recover the true phase information,
which may cause loss of power. Given the difficulty of
using other haplotype estimation approaches, it is inter-
esting to explore whether a computationally efficient, but
naive approach allows progress to be made. We do this via
an analysis of the simulated (Problem 3) GAW 15 data.
We show that a cladistic approach based upon greedy hap-
lotype phase information performs quite well.

Methods

Suppose we have data for N SNPs on M individuals. Let
L(i) denote the location (in kb) of SNP i. Let g, ; denote
the genotype data for individual k at SNP i, where g, is
defined as the number of copies of the minor allele at this
locus. (Our methods also generalize naturally to micros-
atellite data.) We proceed from left to right along each
chromosome, assessing similarity between pairs of geno-
types around each SNP. Suppose we are considering a pair
of individuals j;, j, in a region centered around SNP I, on
chromosome C. Intuitively speaking, at each location I,
our algorithm calculates a similarity measure equal to the
maximum possible haplotype shared length around I.
More formally, we define a function f(j;, j,) as: 2 if g; ;=
8o, i 1if g, gy il = 1; and 0 if |g;, ;-g; 5[ = 2. fi(jy, j,) sim-
ply counts whether both, one, or neither of the pairs of
haplotypes for j;, and j, can match at SNP i. We wish to
stop recording shared lengths on a given haplotype as
soon as a mismatch is found, so we further define F;(j,, j,)
as

min{f;(j1,j2) Fii (i j2)} if i>1,
E(i.j2) =1 filji j2) ifi=1I,
min{f;(j1,j2) Fii(i j2)} if i<

For each pair of individuals j;, j, we define the similarity
around I as S,(j;, j,), where

http://www.biomedcentral.com/1753-6561/1/S1/S125

C(R)
St 2) = Y, F(ja) (L) - L(i-1))
i=I+1
1
+ Y, Eo(h ) L) -L3i-1)).
i=C(L)+1

C(L) [C(R)] denotes the left- [right-]most SNP on chro-
mosome C. We explored a range of other haplotype simi-
larity measures, with similar results (not shown).

We make several observations about this procedure. First,
itis very quick to compute. Second, at each location, it cal-
culates a similarity S,(-,-) based upon phasing each pair
of genotypes such that the possible haplotype sharing
between those two genotypes is maximized, and this is
performed independently across all pairs of individuals.
This is an approximation, in that our measure of identical-
by-state shared length must be greater than or equal to
that which is the case for the (unobserved) true haplo-
types. In principle, we might calculate the assignment of
phase that maximizes the total similarity score across all
pairs of individuals, but this would be highly computa-
tional intensive, and completely intractable for data sets
of the dimensions that are now becoming typical in
genome-wide studies. Third, we are appealing to the intu-
ition that failure to explicitly allow for dependencies
across individuals when assigning haplotype phase will
not introduce too much noise into the analysis, but will
allow us to efficiently exploit cladistic analysis techniques
that are known to perform well in haplotype-based con-
texts. We now give further details of our analysis.

Ateach SNP I, we form an M x M distance matrix using the
reciprocals of the similarity measures S;(-, ). We then
apply a hierarchical agglomerative clustering algorithm to
construct a tree relating all individuals in the sample.
Next, we use an iterative scheme to break this tree into a
number of clusters (clades). Suppose that the current iter-
ation has the tree broken into ¢ clusters. At each step we
explore all possible points at which the tree can be further
broken. A p-value for each potential breakpoint is calcu-
lated by considering the clusters that exist after breaking
the tree at this point. We define a factor variable, W, that
takes a single value for all individuals within each cluster,
but whose value differs across clusters. We then apply a
Kruskal-Wallis non-parametric analysis of variance to
both the new topology, with ¢ + 1 clusters, and the old
topology, with ¢ clusters, to see whether W better explains
the phenotype of interest. Assuming at least one potential
breakpoint results in a p-value that is smaller than that
which was obtained from the representation with ¢ clus-
ters, we accept the breakpoint with the smallest such p-
value. We iterate this process until no decrease in p-value
is obtained. We then record the p-value obtained at this
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locus and repeat the scheme at every other locus. The intu-
ition here is that if we are at a location near a mutation
that influences the phenotype, it is likely that we will be
able to break the tree into a number of pieces that explain
the phenotype (with each cluster corresponding, perhaps,
to a unique occurrence of that mutation).

This procedure results in a p-value for each SNP. It
remains to assess the significance of the results. We expect
markers near a trait locus will have small p-values. A tradi-
tional way to determine a significance cut-off for these p-
values is to use a permutation scheme. For example, for a
data set of interest, we create 100 new data sets in which
we maintain the genotype data but permute phenotypes
across individuals. We then analyze these data sets using
our method and record the value of the lowest p-value
observed in each case. A variety of other permutation tests
are possible, depending on the hypothesis one wishes to
test. It is common practice to follow a procedure such as
the one we use here in order to attest the significance of
the smallest p-value observed in the region under consid-
eration (in our case, a chromosome, although one could
perform a genome-wide permutation test if desired). We
use the set of lowest observed p-values to define a signifi-
cance cut-off for the original, observed data. Such a
scheme is a computationally intensive method to employ.
While the permutation test for a single replicate can be
completed in about 12 hours, and is this highly tractable
for real applications, use of the permutation test across all
100 replicates takes around 50 days per chromosome.
Thus, we present permutation results only for chromo-
some 18 (the case in which significance of results is most
in doubt - see below) [7]. For other analyses, we focus
solely on a presentation of results showing the mean dis-
tance between the trait locus and the SNP with the small-
est p-value (see Results and Discussion).

A further complication is that of computational efficiency.
While our method, which is implemented in C code, is
able to analyze samples of a few hundred individuals in
around 10 minutes, it would prove impossible to analyze
the full set of cases and controls, across all 100 replicates
in the time available. Instead, we chose to implement the
following scheme. For each analysis of a given chromo-
some, for a particular phenotype of interest, we construct
10 data sets consisting of 100 'cases' and 100 'controls'
(sampling without replacement). The definition of 'case’
and 'control' depends on the phenotype of interest, and is
given in the Results. We analyze each of these 10 data sets,
record the p-value for each locus in each analysis, and
report the average p-value across the 10 analyses as the
final 'score’ for that locus.

Due to space requirements, the issue of missing values is
not directly examined in this paper. However, it would be
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relatively straightforward to extend our methods using
schemes that impute missing values. Alternatively, we
could adjust the haplotype similarity measure f,(j;, j,) so
that it includes a score, perhaps based upon allele fre-
quencies at the locus, for genotypes with missing values at
a given locus.

Results and Discussion

Given the limitations of space, we have focused on a
number of regions, and phenotypes, motivated by the
knowledge of the answers. Specifically, we look at chro-
mosomes 6, 11, 18, on which we expect to find signals
(we performed analyses with the answers known to us),
and chromosome 3, on which there should be no signal.
We give details of each analysis, and present output for
Replicate 1 of the GAW15 data to illustrate the behavior
of our method. Then, in order to get an indication of
power of the method, we look at behavior across all 100
replicates for each of these cases. In all cases we have used
genotypes formed from the standard SNP data, (STR, and
the dense SNP map on chromosome 6, have been
excluded from the analysis). While we do not present
more detailed results of other analyses tried upon Repli-
cate 1, our analysis found no other strong signals. We
believe this is largely because the other simulated traits
largely involve effects due to interactions.

Chromosome 6

We use the full set of the cases as well as the panel of 2000
control samples. Parents of cases were excluded. We use
rheumatoid arthritis (RA) affection status as the binary
phenotype of interest.

Chromosome 1 |

The full population of cases (only) were used. IgM level
was used as the phenotype. As described above, ten sets of
sub-samples were analyzed, with results being averaged
across sub-samples. Note that here the phenotype is con-
tinuous. Cases correspond to high values, while controls
are low valued. (Our method is applicable to either dis-
crete or continuous phenotypes.)

Chromosome 18

Here we analyzed just the case individuals. Anti-cyclic cit-
rullinated protein (CCP) level was used as the phenotype.
Cases were ranked according to anti-CCP level. Ten sub-
samples of size 200 were then formed by sampling 100
'high' individuals with anti-CCP level = 210, and 100 'low’
individuals with (anti-CCP level <20). No signal was seen
(results not shown). However, when we restricted the
analysis only to cases with a DR status of '3' we uncovered
a signal, shown in Figure 1 and Table 1.

Page 3 of 5

(page number not for citation purposes)



BMC Proceedings 2007, 1(Suppl 1):S125

http://www.biomedcentral.com/1753-6561/1/S1/S125

Figure |

ie

Results of analysis of chromosomes 6, |11, 18, and 3 (left to right). The x-axis represents position along the chromo-
some (for convenience, markers are plotted as if equally spaced). The y-axis gives the -log p-value for association at each locus
on that chromosome. The trait locus position marked with red line.

Chromosome 3

We also wished to analyze a region in which we did not
expect to find a signal. Thus, we performed an analysis of
chromosome 3 in which all details are the same as those
given for chromosome 6 above.

In Figure 1 we show illustrative results, for chromosomes
6,11, 18, and 3 (left to right in the figure), in this case for
Replicate 1. SNPs are indexed on the x-axis, with the asso-
ciated (-log) p-value plotted on the y-axis. We see clear sig-
nals (i.e., peaks) at the correct locations in chromosomes
6 and 11 (although only one signal is detected on chro-
mosome 6). On chromosome 18 the signal is much less
clear (being qualitatively similar to that seen for chromo-
some 3), but we note that the smallest p-value (i.e., high-
est -log p-value) is obtained very close to the correct
location.

In order to assess power we present results across all 100
replicates in Table 1. We report the range of values
observed over the 100 replicates for the smallest log p-
value associated with any SNP, as well as the distance
between the SNP with the smallest p-value and the trait
locus. The former is an indication of significance of
results; the latter is an indication of accuracy. We see that
for chromosomes 6 and 11, p-values are very small, and
the SNP with the smallest p-value is very close to the func-
tional locus. Presumably, a permutation test would reveal
them to be significant in each replicate (cf. permutation

test results for chromosome 18; we have also checked that
this is true for a permutation of data for these chromo-
somes on Replicate 1). The results for chromosome 18 are
less clear. p-Values are not particularly small, and if we
assume that each replicate leads to significant results we
obtain a large average distance between the SNP with the
smallest p-value and the trait locus. With this in mind, we
conducted a comprehensive permutation test on chromo-
some 18. For each replicate we create 100 data sets in
which we permute the phenotype (anti-CCP level) of all
individuals within the sampled population, and then per-
form an identical analysis to that described for chromo-
some 18. If we then look only at replicates in which the
lowest p-value for the unpermuted data was lower than
the lowest p-value for all 100 permuted data sets, corre-
sponding to an estimated p-value less than 0.01 before
correction for multiple comparisons across chromo-
somes, we find that we locate the correct marker on 44 out
of 65 such replicates. However, the average distance
between the SNP with the smallest p-value and the trait
locus across all 65 such replicates is still high (at 2860 kb),
so our method is clearly not performing that well in this
case (where the signal is substantially weaker than on
chromosomes 6 and 11). Insistence upon a smaller esti-
mated p-value (which would require a larger permutation
test) may improve performance, but was prohibited by
time constraints.

Table I: Summary results across all 100 replicates for four chromosomes

Analysis Range of log(p-values) Mean distance from true locus (kb)?
Chromosome 6 [-34.8, -15.3] 19

Chromosome || [-17.81,-9.75] 31

Chromosome 18 [-5.69, -3.47] 5550

Chromosome 3 [-3.97, -3.34] NA

aDistance between the functional locus and the locus corresponding to the smallest p-value.
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Conclusion

The results in this paper demonstrate that a greedy
method such as ours, in which maximal haplotype shar-
ing is used as a proxy for actual (unobserved) haplotype
sharing, offers the potential to reap some of the advan-
tages of traditional haplotype-based methods while
simultaneously avoiding much of the computational bur-
den. Our method provides a quick way of analyzing
genome-wide data in the absence of phase information.
In other words, we sacrifice power for speed. As such, it
might be used as part of preliminary data analysis, and
used to focus on regions to subject to later, more detailed
analysis. It should be noted that the GAW15 Problem 3
simulated data do not present the ideal platform to test
the limits of our method. Simple locus-by-locus tests typ-
ically also find the signals we find (results not shown),
and the simulated SNPs are too widely spaced for much
LD to be present. Furthermore, our methods are designed
primarily for unrelated population-based samples, rather
than a situation in which some pedigree information is
known. On chromosome 6, the only region in which
dense SNPs are available, the signal is so strong that virtu-
ally any method will find it.

A major future focus of our work will be the detection of
effects due to interactions. It should be possible to capture
interaction between a factor-level exposure variable and a
locus of interest within the iterative process in which we
break the tree topology constructed using a particular
locus and then assess fit. We might simply include the
additional factor and potential interactions in the
Kruskal-Wallis test that is used to assess p-values for each
possible break of the tree. Assessing interactions between
SNP loci will be less straightforward, and it will be subject
to the usual difficulties involved in exploring large num-
bers of possible interactions [8].

Our method is deliberately 'naive'. The goal is to simplify
the analysis without losing the ability to detect signal.
Thus, we speed the method such that we can perform a
rapid 'haplotype'-based analysis of genome-wide data.
This represents an example of a growing move away from
exact, to more approximate methods, driven by the fact
that the size and complexity of modern data sets often
prohibits exact analysis in finite time for complex meth-
ods [9]. The final degree to which such a move is necessary
in a genome-wide association study remains to be seen.
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