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Abstract

Using the Problem | data set made available for Genetic Analysis Workshop |5, we assessed
sensitivity of linkage results to a correlation-based feature extraction method as well as to different
normalization procedures applied to the raw Affymetrix gene expression microarray data. The
impact of these procedures on heritability estimates and on expression quantitative trait loci are
investigated. The filtering algorithm we propose in this paper ranks genes based on the total
absolute correlation of each gene with all other genes on the array and has the potential to extract
features that may play role in functional pathways and gene networks. Our results showed that the
normalization and filtering algorithms can have a profound influence on genetic analysis of gene

expression data.

Background

Several recent studies have applied traditional quantita-
tive trait linkage analysis to genome-wide gene expression
data and have investigated the role of genetic variation in
transcription [1]. These types of studies have the potential
to uncover complicated transcriptional control. For exam-
ple, Morley et al. and others identified several cis- and
trans-acting genes and master regulators using linkage
mapping on the gene expression phenotypes [1]. How-
ever, gene expression measurements are not generated in

a uniform platform and, depending on the particular tech-
nology, most high-level statistical analyses using these
data are preceded by a number of low-level pre-processing
steps. For instance, Affymetrix GeneChip arrays have
become a widely used microarray platform [2] and there
are various algorithms for performing feature extraction
and normalization on these high-density oligonucleotide
gene expression arrays [3,4]. Ideally, all of the methods
and algorithms should produce similar results. In prac-
tice, however, findings could be sensitive to variations in
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pre-processing approaches and may lead to different
results. In particular, the impact that different algorithms
have on expression quantitative trait loci (eQTL) analysis
is not well understood. Understanding consequences of
low-level pre-processing approaches is essential in inter-
preting findings from genome-wide linkage analyses of
multivariate gene expression measurements. In this paper,
we first propose a correlation-based filtering method. The
motivation is to select genes that may participate in path-
ways. We then apply three normalization methods and
the filtering algorithm to the Problem 1 data set made
available for Genetic Analysis Workshop 15 (GAW15). In
particular, we compare and contrast heritability estimates,
concordance in top-ranked genes, and impact on the
number of genes identified as cis-, trans- or multiple-regu-
lators.

Materials and methods

Raw gene expression measurements obtained from lym-
phoblastoid cell lines from 14 Centre d'Etude du Poly-
morphisme Humain (CEPH) Utah families were made
available for GAW15. Furthermore, a subset consisting of
3554 genes that Morley et al. analyzed for linkage was also
made available [1]. The genotypes of 2882 autosomal and
X-linked SNPs of members of these families were gener-
ated by The SNP Consortium http://snp.cshl.org/.

For the data in this problem, the Affymetrix Genome
Focus Arrays were used. A unique feature of microarrays
generated using the Affymetrix platform is the so-called
MisMatch (MM) probes. Each of the probe pairs in a
probe set has a Perfect Match (PM) and a MisMatch probe,
with each probe having 25 bases. The PM probes are
designed to bind perfectly to the gene of interest and the
MM probes have a contrasting base at position 13 with the
intention of measuring non-specific binding [2]. The
Microarray Analysis Suite (MAS) algorithm from Affyme-
trix [2] incorporates information from the MM probes
into the calculation of gene expression intensities. How-
ever, there is a continuing debate in the literature over the
merit of MM probes as well as the impact of the various
algorithms on downstream analysis. Several new algo-
rithms have been proposed in recent years and most of
them use only the PM signals to calculate gene expression.
The algorithms include the robust multi-array average
(RMA) method [3], Gene Chip RMA (GCRMA) [4], and
the probe logarithmic error intensity estimate (PLIER)
method from Affymetrix [2].

Morley et al. applied the MAS algorithm and selected
3554 genes using data from 94 grandparents such that the
between-individual variance is larger than the within-
individual variance [1]. In this report, we used raw CEL
files from 194 subjects and applied the RMA, GCRMA,
and PLIER algorithms to normalize and calculate gene
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expression intensities. Like the MAS algorithm, the PLIER
method also incorporates information from MM probes
while both RMA and GCRMA use only PM signals. We
then ranked genes by the total absolute correlation (TAC)
that each gene i has with the other n - 1 genes. The TAC for
each gene is calculated as follows:

TAC; :z;l“ij -1 (1)

where r;;is the correlation of gene i with gene j. For this fil-
tering procedure, we used expression profiling data from
56 unrelated individuals. We extracted the top 3554 genes
ranked by TAC from the largest ones to the smallest ones,
so that we can make qualitative comparisons with what
was reported by Morley et al. [1].

After the normalization and filtering steps, we carried out
multipoint linkage analysis on each of the phenotypes
using the MERLIN-REGRESS command in the statistical
genetics software MERLIN [5]. The variance components
(VC) option in MERLIN was used to estimate heritability.
As in Morley et al., cis regulators were defined as those reg-
ulatory variants that mapped within 5 megabases (Mb) of
the target gene [1]. All other significant linkages are cate-
gorized as trans regulators. Physical locations of probe sets
were obtained from the Affymetrix annotation table http:/
[www.affymetrix.com. The Rutgers map was used to estab-
lish a correspondence between the physical map and the
genetic map http://compgen.rutgers.edu/maps. Markers
that could not be mapped using the Rutgers map, but that
were located between physically anchored markers, were
placed on the genetic map by interpolation.

Results

It appears that the normalization methods have a strong
effect on the gene expression correlation structure. The
selected genes from RMA may have lower correlation than
those from GCRMA and PLIER. Depending on the
method used, different genes were identified as the top-
ranking genes. The overlap in probe sets extracted using

Table |: Estimated heritability values based on the raw gene
expression data sets normalized by three different methods

Heritability interval RMA GCRMA PLIER
0.00-0.10 1592 3249 3510
0.11'-0.20 863 145 44
0.21 -0.30 609 82 0
0.31-0.40 309 42 0
0.41 -0.50 134 23 0
0.51 -0.60 29 10 0
0.61 -0.70 13 2 0
0.71 -0.80 4 I 0
0.81 -0.90 I 0 0
0.91-1.00 0 0 0
Page 2 of 5

(page number not for citation purposes)


http://snp.cshl.org/
http://www.affymetrix.com
http://www.affymetrix.com
http://compgen.rutgers.edu/maps

BMC Proceedings 2007, 1(Suppl 1):S150

http://www.biomedcentral.com/1753-6561/1/S1/S150

Table 2: Number of expression phenotypes having cis-/trans-/cis and trans-regulators at different p-value thresholds using data sets
normalized by three methods (cis regulators are those that mapped within 5 Mb of the target gene)

RMA GCRMA PLIER
p-Value LOD cis trans cisttrans cis trans cis+trans cis trans cisttrans
3.7%10 34 0 910 5 0 205 | 0 2527 2
4.3%107 53 0 454 | 0 71 0 0 258 0

the three normalization approaches described earlier
(RMA, GCRMA, and PLIER) along with our correlation-
based feature extraction algorithm in comparison with the
probe sets selected by Morley et al. [1] following their use
of the Affymetrix MAS algorithm and a variance-based fil-
tering varied from 10% to 43%. Specifically, the overlap
between their results and the results from RMA, GCRMA,
and PLIER were 1174/3554 (33%), 361/3554 (10%), and
1528/3554 (43%), respectively. Among these three meth-
ods, the rates of concordance were as follows: RMA versus
GCRMA, 1670/3554 (47%); RMA versus PLIER, 1732/
3554 (49%); and GCRMA versus PLIER, 1149/3554
(32%).

Table 1 presents a summary of the heritability estimates
corresponding to the different normalization procedures.
As can be seen from this table, the PLIER method resulted
in a heritability estimate of less than 0.20 for all of the

3554 traits. Heritability estimates from data processed
with RMA appear to be larger than the other two methods.

Table 2 provides the number of expression phenotypes
having cis-/trans-/cis and trans-regulators corresponding to
the three normalization techniques and two p-value
thresholds. The two p-value thresholds were chosen fol-
lowing Mortley et al. for comparison purposes [1]. We
have not identified cis-acting regulators among the top
3554 genes when using any of the three normalization
methods and p-value thresholds. Few genes were regu-
lated by both cis-and-trans SNPs. The number of expres-
sion phenotypes with a trans-regulator using RMA is
comparable with results reported in Morley et al. using a
p-value threshold of 3.7*10-5[1], in which they identified
a total of 984 expression phenotypes with regulators.
However, the GCRMA resulted in much fewer genes with
trans-regulators while the PLIER method detected more
genes with trans-regulators at the same p-value threshold.

Table 3: Selected expression phenotypes? with significant evidence for linkage (LOD score > 3.4) from genome scans identified in all

data sets normalized by three different methods

LOD score
Gene symbol Chromosomal RMA GCRMA PLIER cis/trans
location
MCP 1932 4.19 4.12 5.29 trans
YT521 4ql3.2 3.79 451 4.38 trans
RNFI1 Ipter-p22.1 4.21 345 4.57 trans
RASSF3 12q14.2 4.99 4.60 5.17 trans
RAB6C 2q31 6.32 6.12 4.46 trans
FAMBAI 6p22-p23 4.62 4.75 5.20 trans
ZNF217 20ql13.2 4.36 4.75 4.76 trans
CREB3 9pter-p22.1 3.60 441 3.48 trans
PRPSAP| 17q24-q25 4.97 3.54 4.28 trans
SPAGY 17q21.33 5.09 3.90 4.19 trans
SRPK2 7q22-q31.1 3.52 5.13 3.89 trans
LOC81558 17q21.33 3.96 5.44 436 trans
IRF2 4q34.1-q35.1 4.28 3.48 3.6l trans
BCL2 18q21.33|18q21.3 441 5.86 4.78 trans
PTPN22 Ip13.3-pl3.1 3.76 4.25 4.6l trans
SDCBP 8ql2 5.76 4.76 5.08 trans
0oSBP I1ql2-ql3 4.21 4.46 371 trans
PTPNI 20ql3.1-q13.2 5.22 5.12 3.77 trans
RGSI2 4pl6.3 5.90 4.68 4.17 trans
aSome regions of these genes also exhibit copy number variation in healthy individuals (see details in the text).
Page 3 of 5

(page number not for citation purposes)



BMC Proceedings 2007, 1(Suppl 1):S150

A total of 67 expression phenotypes with strong linkage
(p-value < 3.7*10-5) have been detected by all three meth-
ods. 19 of the 67 (28.4%) expression phenotypes with
trans-regulators that have been identified in all the data
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sets normalized using the three different normalized
methods have also been shown to exhibit copy number
variation in healthy individuals [6]. This was determined
by searching the copy number variation database availa-

Boxplot of LOD vs Heritability
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Box plot of LOD scores versus heritability. The plot shows the distributions of LOD scores at different heritability inter-
vals for three normalization methods. For each gene, we took the maximum LOD score. a, RMA; b, GCRMA,; ¢, PLIER.
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ble at http://projects.tcag.ca/variation/. These 19 expres-
sion phenotypes are listed in Table 3. The genes showing
copy number variation and significant linkage signals
may be of interest for further biological investigation.

We took the maximum LOD score for each trait and
grouped them into different heritability categories. Figure
1 shows the overall trend of maximum values of LOD
scores corresponding to different heritability intervals as
shown in Table 1. No clear relationship between the her-
itability estimates and the maximum LOD score was seen.
Some traits with high LOD scores have low heritability
and other traits with high heritability have similar LOD
scores as those with low heritability, as can be seen in Fig-
ure la and 1b.

Discussion

Recently, a number of groups have started to integrate
data from gene expression studies with genetic linkage
analysis, leading to a new synergy between the two
approaches [1]. Understanding the genetic basis of gene
expression might shed light on processes that connect
genotypic information to cellular- and organism-level
information and systems biology. We used classical quan-
titative trait loci methodology in which expression levels
are treated as quantitative phenotypes and genetic vari-
ants that significantly influence gene expression are
sought along the entire genome. Several studies have
shown that mRNA levels for many genes are heritable and
mapping efforts have led to the characterization of genetic
regulation in 'cis', as well as in 'trans' [1].

We applied three different normalization methods to the
Problem 1 data set provided for GAW15 and carried out
expression quantitative trait linkage (eQTL) analysis for
3554 traits. We used a filtering algorithm that extracts fea-
tures based on a large total absolute correlation criterion
to come up with the set of genes for the linkage analyses.
Our findings suggest that different normalization and fil-
tering algorithms can have a profound influence on
genetic analysis of gene expression data. This observation
is in agreement with a recent brief report by Williams et al.
[7]. Our linkage analysis treated each trait independently
of the others, similar to most other published work in this
area [1]. Unlike the variance-based filtering used by Mor-
ley et al. [1], our correlation-based filtering takes depend-
ence among genes into account in the pre-processing
phase. The results from our approach can be useful in
interpreting linkage results and inferring which genes may
participate in pathways. We have not investigated whether
the gene expression measurements are normally distrib-
uted, and this may also influence the power of the linkage
findings.

http://www.biomedcentral.com/1753-6561/1/S1/S150

Our choice of Pearson correlation was arbitrary but not
critical. This is supported by the following analysis: we
evaluated the correlations between the TAC estimated by
Pearson (TAC-Pearson) and that by Spearman (TAC-
Spearman) for the data normalized by the three normali-
zation methods. The correlations between these two
measures were 0.92, 0.90, and 0.94, respectively, for
expression values normalized by RMA, GCRMA, and
PLIER, respectively. We also evaluated the similarity of
TAC rank of the set of 3554 expression phenotypes esti-
mated by Pearson and Spearman correlations. For the
2000 top-ranked genes, the proportion of overlapped set
of genes based on Pearson and Spearman were 89.8%,
87.2%, and 92.2% for RMA, GCRMA and PLIER, respec-
tively.
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