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Abstract

"Genetical genomics", the study of natural genetic variation combining data from genetic marker-
based studies with gene expression analyses, has exploded with the recent development of
advanced microarray technologies. To account for systematic variation known to exist in
microarray data, it is critical to properly normalize gene expression traits before performing
genetic linkage analyses. However, imposing equal means and variances across pedigrees can over-
correct for the true biological variation by ignoring familial correlations in expression values. We
applied the robust multiarray average (RMA) method to gene expression trait data from 14 Centre
d'Etude du Polymorphisme Humain (CEPH) Utah pedigrees provided by GAW 5 (Genetic Analysis
Workshop 15). We compared the RMA normalization method using within-pedigree pools to RMA
normalization using all individuals in a single pool, which ignores pedigree membership, and
investigated the effects of these different methods on 18 gene expression traits previously found
to be linked to regions containing the corresponding structural locus. Familial correlation
coefficients of the expressed traits were stronger when traits were normalized within pedigrees.
Surprisingly, the linkage plots for these traits were similar, suggesting that although heritability
increases when traits are normalized within pedigrees, the strength of linkage evidence does not
necessarily change substantially.

Background order to determine loci involved in regulatory expression
Genetical genomics [1] integrates genome-wide expres-  of quantitative variation in RNA level. As a result of the
sion profile data of microarray experiments and marker-  reduced cost of microarray expression arrays and marker

based measures of genetic variation. It has newly become  genotyping, these studies have been extended to study
a central methodology in quantitative trait studies in  quantitative traits in linkage and association studies [2,3].
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In microarray experiments, research on determining
which normalization method best adjusts for systematic
experimental variation to produce unbiased data is neces-
sary. Among the normalization methods used for the
common Affymetrix GeneChip, the robust multiarray
average (RMA) method and the statistical algorithm
implemented in Affymetrix's Microarray Suite (MAS5)
program are the gold standard to control for systematic
variation in samples of unrelated individuals [4,5]. Inves-
tigation of the effects of various normalization methods
in family data are needed [6].

RMA adjusts for systematic variation by performing a
quantile normalization procedure, which assumes that
the data for the variable considered (such as study sam-
ple) all are sampled from the same or similar distributions
and the values for that variable are then normalized to a
standard distribution. However, it is not yet known which
standard distribution is the best to use for family data in
genetical genomics studies. Linkage analysis utilizes data
from pedigrees, which usually have more homogeneity
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within pedigrees for the trait under study than between
pedigrees, both biologically and environmentally. Thus,
the increased background sharing within pedigrees can
result in increased correlation between related individuals
for expression levels. Consequently, the familial correla-
tion within each pedigree due to biological similarity is of
interest in linkage studies. Therefore, we hypothesized
that linkage analysis that uses expression trait data nor-
malized by ignoring pedigree membership could improp-
erly 'correct' the trait values by imposing equal means and
variances across pedigrees. A conceptual graph (Fig. 1)
plots the values of one trait for each individual. It shows
how an outlier in a family, whose members have a differ-
ent distribution of expression values than other families,
will be systematically adjusted (solid arrow) toward the
familial mean value if its value is normalized by within-
pedigree normalization methods. However, the normal-
ized trait values will be over-corrected and biased toward
the overall mean if normalized using all individuals
because this method falsely assumes that they are unre-
lated individuals sampled from a single distribution. A

(b) Using Individual pool
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Adjustment of systematic variation by normalization using within-pedigree pool and using all individuals pool.
a, RMA using a within-pedigree pool: an outlier with systematic variation will be adjusted toward the familial mean of that par-
ticular gene expression value. Each symbol (circle, triangle, cross, and X) represents the family and horizontal lines indicate the
familial mean value. b, RMA using all individuals as the pool (all subjects shown as circles): an outlier will be adjusted toward the

mean of all individuals' gene expression values.
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second member of the same family would be adjusted in
a different direction (dashed arrow) away from the overall
mean and toward the family mean if its value is normal-
ized by within-pedigree normalization.

Our aim is to maintain the individual familial distribu-
tions with normalization. We address this problem of
normalization of expression data within pedigrees by
comparing two possible standard distributions for nor-
malization: 1) applying RMA across all arrays as a pool,
which assumes all individuals are independent and share
the same distribution of trait values, and 2) applying RMA
to arrays within pedigrees assuming family members
within a pedigree share the same distribution.

Methods

Study subjects consisted of 194 individuals from 14 Cen-
tre d'Etude du Polymorphisme Humain (CEPH) Utah
pedigrees, and 2882 autosomal and X-linked single-nucle-
otide polymorphism (SNP) genotypes were available
from The SNP Consortium [2]. Quantitative phenotype
data were generated from immortalized B cells, and 8793
gene expression values were available from the microarray
raw CEL (cell intensity file) data files from the Affymetrix
Genechips and Hgfocus CDF (chip description file) files.
In cases in which a subject had more than one expression
file, the first replicate was chosen for this analysis so that
we used one array per subject. To evaluate the perform-
ance of different scenarios, two data sets were used: 1)
RMA normalized using all individuals (arrays) as the nor-
malization pool, and 2) RMA normalization applied to a
within-pedigree pool to be able to allow for as many dis-
tributions as the number of pedigrees. The 'affy' package
v1.8 in R v2.3.1 was used to perform the normalizations
of the expression data [7].

In order to examine the effect of using different normali-
zation pools consisting of different types of individuals,
we performed paired t-tests using 8793 gene expression
values of four founders of one family in two ways: com-
paring the values of the four founders after normalizing
using themselves as the pool to paired gene expression
values after normalizing 1) using all family members
including themselves as the pool, and 2) using independ-
ent individuals as the pool (other grandparents from
other families) [8]. The purpose of microarray normaliza-
tion methods is to remove systematic variation while pre-
serving biological variation. Therefore, comparison of the
normalized gene expression data using the four founders
as their own normalization pool to the normalized data
using either of the other two pools (family members or
independent individuals) should not show significant dif-
ferences if the normalization pools are all only removing
random error variation. Thus, we should observe non-sig-
nificant p-values for these paired t-tests if only random

http://www.biomedcentral.com/1753-6561/1/S1/S152

variation is removed by each method. We assumed that
these t-tests indicated a significant difference in the nor-
malization methods if the p-value was less than a conserv-
ative p-value of 0.001 (since we were performing over
8,000 tests). However, we also evaluated this using a p-
value of 0.05 as the significance threshold.

To examine the effect of normalization methods on link-
age results, we selected 18 cis-acting transcriptional regu-
lator phenotypes with previous evidence of cis-acting
linkage to the known location of each corresponding
structural gene [2]. Nonparametric quantitative linkage
analysis was performed using Merlin v1.0 with the qtl
option. We plotted both the negative p-values of the non-
parametric linkage score [8] and the allele-sharing LOD
score of Kong and Cox [9]. Based on the change of mean
and variance of the trait values in each array, some indi-
viduals may have different trait values when using differ-
ent normalization methods. FCOR in S.A.G.E v5.1.0 was
used to calculate familial correlations (e.g., parent-off-
spring, sibling, and grandparent), which were compared
for each trait across the different normalization methods.

Results and discussion

When comparing the gene expression data normalized
using four individuals as their own normalization pool ver-
sus using their family members as a pool, 39% of traits had
a p-value < 0.001 and 91% had a p-value < 0.05. Interest-
ingly, 95% of the genes had a p-value < 0.001 and 99.5%
had a p-value < 0.05 when comparing data normalized
using the four individuals as their own normalization pool
versus using independent individuals as the normalization
pool. This suggests that using independent individuals as
the normalization pool may be removing biological varia-
tion in addition to removing random error. Figure 2a shows
the different means and variances individually before nor-
malization colored distinctively by family. Prior to normal-
ization, the pedigrees appear to have familial trends, with
siblings having similar trait values while unrelated grand-
parents are more different (Fig. 2b). These might reflect the
potential genetic correlations in expression values within
pedigrees. After normalization using all individuals as the
normalization pool (Fig. 2¢), all subjects were aligned at the
overall mean and variance. However, when the normaliza-
tion uses the within-pedigree pool, the mean and variance
were aligned distinctly for each family (Fig. 2d). Plots of the
within-pair trait differences for the two normalization
methods show that some sib-pairs had very similar values
across these methods, whereas there was a marked change
in these within-pair trait difference values for other sib pairs
(data not shown).

In Table 1, we show that the familial correlation coeffi-
cients of expression phenotype values have changed
according to the normalization pool. Generally, the corre-
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(a) Before normalization - all individuals
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(c) After normalization - RMA using individual pool

Figure 2
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(b) Before normalization - two families
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(d) After normalization - RMA using within-pedigree pool

Box plots of 194 individuals across 8793 genes before and after normalization. a, Box plots of 194 individuals across
8793 genes before normalization. b, Box plots from the representative two families before normalization. Green, grandparents;
black, parents; red, siblings. ¢, After RMA normalization using all individuals (arrays) as normalization pool. d, After RMA nor-

malization using within-pedigree pool. For panels a, ¢, and d, each color represents a different family.

lation coefficients between all relative pairs are higher in
the data normalized within pedigrees than in the data
after normalization using all individuals. CPNE1, CSTB,
ICAP_1A, and TM7SF3 have negative familial correlation
coefficients (bold in Table 1) when they are calculated
with the phenotypes after normalizing using all individu-
als as the normalization pool. Those coefficients are posi-
tive after normalizing using the within-pedigree pool.
This suggests that the within-pedigree method preserves
the underlying biological variation patterns while remov-
ing the systematic variation, since we have strong prior
evidence that 18 cis-acting genes are involved in the regu-
lation of these gene expression levels. The results of non-

parametric quantitative linkage show that normalization
using either the all-individuals pool or the within-pedi-
gree pool yields similar maximum allele-sharing LOD
scores for signals within 20 ¢cM of the target structural
gene. However, most of these allele-sharing LOD scores
were slightly decreased for the within-pedigree pool com-
pared to the individual pool (15/18). The difference in
maximum LOD scores between the methods ranged from
0.7 to 0.01. When we compared the negative log p-values
of the NPL scores, the patterns of most genes normalized
within-pedigree (red solid line) and using all individuals
in the normalization pool (black dashed line) were simi-
lar except for RPS26 and CTSH (Fig. 3).
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Table I: Familial correlation coefficients and maximum LOD score of non-parametric linkage analysis after RMA normalization

Familial correlation coefficient?

Parent-offspring Sibling Grandparent-grandchild Maximum LOD®P
Gene Target gene All arrays Within All arrays Within- All arrays Within- All arrays Within-
loci pool pedigree pool pool pedigree pool pool pedigree pool pool pedigree pool
CHI3L2 Ipl2 0.308 0.2689 0.1477 0.1146 0.1274 0.082 4.08 4.25
GSTM2 Ipl3 0.2887 0.3217 0.3284 0.3941 0.2277 03412 3.15 3.58
VAMP8 2pll 0.0939 0.4196 0.4304 0.7284 0.0475 0.4261 2.7 2.18
ICAP_IA 2p25 -0.2898¢ 0.1242 0.4277 0.7435 -0.1441 0.5436 1.23 1.97
CTBPI 4plé 0.3012 0.3772 0.5581 0.639 0.2002 0.3534 0.8l 0.58
PPAT 4ql2 0.2055 0.2545 0.4469 0.4539 0.0778 0.1774 2.24 1.77
LOC64167 5ql5 0.2927 0.3464 0.2254 0.2843 0.0483 0.1295 46l 4.12
PSPHL 7pll 0.3932 0.5599 0.4086 0.5207 0.223 0.4089 2.51 2.54
ZP3 7qll 0.4084 0.6565 0.43 0.7211 0.2311 0.5527 46l 3.93
IRF5 7932 0.3462 0.384 0.2874 0314 0.0825 0.1731 3.06 242
HSDI17B12 Ipll 0.2375 0.7565 0.3892 0.8512 0.1205 0.7026 2.06 1.96
TM7SF3 12pl1 0.0618 0.5035 0.1892 0.6145 -0.1298 0.3133 1.67 1.41
RPS26 12q13 0.5907 0.6533 0.7628 0.8023 0.3606 0.453 1.58 1.57
CTSH 15q25 0.421 0.5694 0.5442 0.6546 0.322 0.5205 2.29 1.6
ILIé6 15926 0.0235 0.1814 0.4244 0.5689 0.047 0.2333 2.18 1.97
CPNEI 20ql | -0.0113 0.3377 0.3958 0.73 0.0512 0.3515 1.52 0.68
CSTB 21q22 0.1592 0.3987 0.2717 0.5898 -0.0075 0.2784 2.31 1.69
DDX17 22ql3 0.1687 0.2588 0.1911 0.5493 0.1911 0.2523 2.02 274
aCorrelation coefficients of 18 gene expression values by familial pairs using FCOR, S.A.G.E.v5.1.0.
bMaximum allele-sharing LOD score of nonparametric linkage analysis after RMA normalization.
Bold text indicates negative familial correlation coefficient.
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Figure 3

Results of nonparametric quantitative linkage analysis of 18 cis-acting gene expression values using Merlin. Plots
of negative log p-values (Y axis) of |8 cis-acting genes in nonparametric linkage analysis. Red solid line: LOD score using pheno-
types normalized by RMA using a within-pedigree pool. Black dashed line: LOD score using phenotypes normalized by RMA

using all individuals as a normalization pool.
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Conclusion

Because of the presence of systematic variation in generat-
ing gene expression data, proper normalization of raw val-
ues is required to separate true signals from background
noise. Previous gene expression studies have typically
focused on unrelated individuals. With the emergence of
genetic linkage studies of gene expression traits, the use of
pedigrees poses concerns for proper normalization. We
investigated the need to account for pedigrees by normal-
izing within families. Our results for the 18 linked traits
show strong familial correlations, which generally
increased when traits were normalized within pedigrees.
However, in general, the strength of the maximum LOD
score decreased (13/18) when traits were normalized
within pedigrees. This is not surprising because the
increased correlation of a quantitative trait within a family
may decrease evidence for linkage. It is also possible that
linkage signals are inflated when normalizing using all
individuals as the pool. Because we did not evaluate link-
age of these 18 traits to all markers on other chromosomes
in this data set, we cannot evaluate possible inflation of
linkage signals. However, the pattern of the chromosomal
linkage plot for these genes (15/18) did not differ across
the two normalization strategies. This lack of difference
suggests that normalization within pedigrees may not be
necessary, at least in studies with small pedigree sizes.
However future linkage studies on expression data with
larger pedigree sizes and/or large sample sizes may benefit
from normalization by pedigree.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Acknowledgements

This work was partly supported by the Korea Research Foundation Grant
funded by the Korean Government (MOEHRD) (KRF 2005-213-C00007)
and in part by the Intramural Research Program of the National Human
Genome Research Institute, National Institutes of Health. Some of the
results of this paper were obtained by using the program package S.A.G.E.,
which is supported by a U.S. Public Health Service Resource Grant
(RR03655) from the National Center for Research Resources.

This article has been published as part of BMC Proceedings Volume | Sup-
plement |, 2007: Genetic Analysis Workshop |5: Gene Expression Analysis
and Approaches to Detecting Multiple Functional Loci. The full contents of
the supplement are available online at http://www.biomedcentral.com/
1753-6561/1?issue=S|.

References

I. Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F,
Mueller M, Hummel O, Monti , Zidek V, Musilova A, Kren V, Causton
H, Game L, Born G, Schmidt S, Miiller A, Cook SA, Kurtz TW, Whit-
taker |, Pravenec M, Aitman TJ: Integrated transcriptional profil-
ing and linkage analysis for identification of genes underlying
disease. Nat Genet 2005, 37:243-253.

2. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman
RS, Cheung VG: Genetic analysis of genome-wide variation in
human gene expression. Nature 2004, 430:743-747.

http://www.biomedcentral.com/1753-6561/1/S1/S152

Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick
JT: Mapping determinants of human gene expression by
regional and genome-wide association. Nature 2005,
437:1365-1369.

4. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang ], Hsu HC, Mountz |D,

Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RWV:
Complex trait analysis of gene expression uncovers poly-
genic and pleiotropic networks that modulate nervous sys-
tem function. Nat Genet 2005, 37:233-242.

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis K],
Scherf U, Speed TP: Exploration, normalization, and summa-
ries of high density oligonucleotide array probe level data.
Biostatistics 2003, 4:249-264.

6.  Chesler EJ, Bystrykh L, de Haan G, Cooke MP, Su A, Manly KF, Wil-

liams RW: Reply to "Normalization procedures and detection
of linkage signal in genetical-genomics experiments”. Nat
Genet 2006, 38:856-858.

7.  Gautier L, Cope L, Bolstad BM, Irizarry RA: affy — analysis of

Affymetrix GeneChip data at the probe level. Bioinformatics
2004, 20:307-315.

8. Whittemore AS, Halpern |: A class of tests for linkage using

affected pedigree members. Biometrics 1994, 50:118-127.

9. Kong A, Cox NJ: Allele-sharing models: LOD scores and accu-

rate linkage tests. Am | Hum Genet 1997, 61:1179-1188.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 6 of 6

(page number not for citation purposes)


http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15711544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15711544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15711544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16251966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16251966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15711545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15711545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15711545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8086596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8086596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9345087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9345087
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results and discussion
	Conclusion
	Competing interests
	Acknowledgements
	References

