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Abstract
Recent studies have shown that linkage disequilibrium (LD) between single-nucleotide
polymorphism (SNP) markers is widespread. Assuming linkage equilibrium has been shown to
cause false positives in linkage studies where parental genotypes are not available. Therefore,
linkage analysis methods that can deal with LD are required to accurately analyze SNP marker data
sets. We compared three approaches to deal with LD between markers: 1) The clustered-markers
approach implemented in the computer program MERLIN; 2) The standard hidden Markov model
(HMM) multipoint model augmented with a first-order Markov model for the allele frequencies of
the founders, in which we considered both a Bayesian and a maximum-likelihood implementation
of this approach; 3) The 'independent' SNPs approach, i.e., removing SNPs from the data set until
the remaining SNPs have low levels of LD.

We evaluated these approaches on the Illumina 6K SNP data set of affected sib-pairs of Problem
2. We found that the first-order Markov model was able to account for most of the strong LD in
this data set. The difference between the Bayesian and maximum- likelihood implementation was
small. An advantage of the first-order Markov model is that it does not require the user to specify
parameters.
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Background
In this paper we evaluate a number of approaches that
explicitly model linkage disequilibrium (LD) between
markers. These approaches are extensions of pedigree like-
lihood models such as the HMM described by Kruglyak et
al. [1], which assumes linkage equilibrium between the
markers. The goal is to analyze affected sib-pair families in
order to localize genetic susceptibility loci of complex dis-
eases.

Methods
Maximum likelihood with clustered markers
Abecasis et al. [2] proposed a clustered markers approach
to model LD, which they implemented in the computer
program MERLIN. The main idea is to cluster tightly
linked markers and to model LD between the markers in
a cluster by estimating haplotype frequencies with the
expectation-maximization (EM) algorithm. The haplo-
type frequencies are estimated for each cluster independ-
ently. Markers are clustered together when the level of LD
exceeds a threshold to be specified by the user. The
approach requires that there are no recombination events
between markers in a cluster. When the genotypes indi-
cate an obligate recombinant between markers in a clus-
ter, genotypes are set to missing to remove the obligate
recombinant. Furthermore, the approach does not model
LD between clusters.

Independent markers approach
First, pair-wise LD correlation coefficients are estimated
between pairs of markers. When the level of LD between a
pair of markers exceeds a threshold, which must be speci-
fied by the user, one of the markers is removed from the
data set. As a result, the remaining set of markers will not
have markers with levels of LD that exceed the threshold.

A first-order Markov model
We propose to use a first-order Markov model to handle
LD between the markers; LD between each pair of markers
is modeled with an approach similar to the one proposed
by Yang et al. [3] for a marker and a trait. In contrast with
their work, we will compute identity-by-descent (IBD) sta-
tistics such as Zpairs [1], and will not model LD between
marker and trait alleles.

The first-order Markov model is applied to the alleles of
each founder individual independently:

P(Gi|α, β) = P(Gl
i|αl)∏l=2,...,LP(Gl+1

i|Gl
i, α(l,l+1), β(l,l+1)),

where i is founder, where Gl
i represents an allele (which

can be paternal or maternal) for marker l of a founder i,
and L is the number of markers. α and β are the LD param-
eters that quantify the linkage between the alleles of two
adjacent SNPs:

P(A|a, α(l,l+1), β(l,l+1)) = α(l,l+1), P(A|b, α(l,l+1), β(l,l+1)) = 
β(l,l+1).

In this equation, the alleles of marker l are denoted by (A,
B); the alleles of marker l + 1 are denoted by (a, b). Our
approach assumes Hardy-Weinberg equilibrium between
founder alleles. MERLIN and the independent markers
approach also make this assumption. The goal is to infer
the posterior probability distributions of segregation indi-
cators of the non-founders (NF) for locus l, denoted by sNF
l, given marker data, integrated over the nuisance parame-
ters α(l,l+1) and β(l,l+1):

Here, Gi with iε{F} represents the vector of paternal or
maternal founder alleles for all marker loci; when multi-
ple families are available, the product is implied to run
over the founder alleles in all families. P(Gi|α, β) is the
first-order Markov model given by Eq. (1). Thus, the seg-
regation indicators of individuals in different families
become dependent through the jointly shared, unob-
served model parameters α and β given marker data M.

Evaluation of the integral in Eq. (2) is computationally
infeasible when the number of families is large (>4).
Therefore, we use the following computationally feasible
procedure:

1. For each pair of adjacent markers (l, l + 1), infer
P(α(l,l+1), β(l,l+1)|M(l,l+1)) using the marker data of all fami-
lies. If the number of markers is L, this step entails L - 1
independent inference problems, independent of the
number of families. Thus, the marker data of all families
for the two adjacent markers (l, l + 1) is used to estimate
the parameters α(l,l+1), β(l,l+1). In this step we use set of dis-
crete values for these parameters so that exact computa-
tion using the junction tree algorithm [4] is feasible when
the number of founders per family is limited. We assume
a uniform prior distribution over α and β.

2. For each family f, independently compute the IBD-shar-
ing statistics for marker l from

where sf denotes the segregation indicators of the non-
founder individuals in family f. The integrals are carried
out approximately using the set of discrete values for α
and β.

Application to data
We compared the Bayesian first-order Markov approach,
the maximum-likelihood first-order Markov approach,
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the maximum-likelihood clustered markers approach
implemented in MERLIN, and the independent SNPs
approach on the 61 families from the Canadian popula-
tion of GAW15 Problem 2, genotyped with the Illumina
marker set. These are affected sib-pair families in which
generally only the children have marker data. It has been
reported that LD between markers in the 6 K Illumina set
appears to be lower than LD between markers in the 10 K
Affymetrix set, although significant LD is present [5].

We analyzed chromosomes 1, 2, 3, 4, and 6 in this data
set. We estimated the parameters α(l,l+1) and β(l,l+1) for the
markers on these chromosomes for which Illumina
reports the Decode centimorgan chromosomal location
using the procedure described above. For the Bayesian
first-order Markov approach, we used a set of ten discrete
values for the parameters α and β, chosen such that they
covered 99.9% of the posterior probability mass. They
were determined for each pair of adjacent markers inde-
pendently. The parameters of the maximum-likelihood
first-order Markov were determined using the same set of
discrete values.

Results
To assess the validity of the first-order Markov model
(FOMM) for the real data, we estimated LD using r2

between adjacent markers, every second marker, every
third marker, and every tenth marker (denoted by respec-
tively Δ = 1, Δ = 2, Δ = 3, and Δ = 10). The left panel in Fig-
ure 1 shows that most LD is of the order r2 ~ 10-2 and that
strong LD (r2 > 10-1 ) occurs mostly for Δ = 1 and Δ = 2,
and decreases rapidly with Δ. We observe that the low lev-
els of LD with r2 ~ 10-2 seem to be present independent of

Δ. The middle panel shows how well the FOMM captures
the LD. The FOMM correctly captures all correlations
between adjacent markers (Δ = 1), but has slightly lower
r2 for Δ > 1. The right panel compares the r2 for Δ = 2 as
estimated directly from the data with the r2 as modeled by
the FOMM for Δ = 2, and shows that the FOMM accounts
for most of the strong LD between pairs of markers. Thus,
the FOMM can handle LD that extends beyond adjacent
markers. The FOMM does slightly underestimate low lev-
els of LD (r2 < 10-1) for Δ = 2, which is a consequence of
the fact that correlations in the FOMM scale as r-Δ. We con-
clude that the FOMM is generally valid for the strong lev-
els of LD.

Next, we compare in Table 1 the normalized nonparamet-
ric linkage statistic Zpairs for the different approaches. Table
1 shows the difference in Zpairs between any of the
approaches and the Bayesian first-order Markov model,
which we have taken as the reference (because the data are
not simulated there is no gold standard, but we believe
that the FOMM assumption is quite accurate). The differ-
ences are shown as means over the five chromosomes. The
approach that ignored LD yielded the highest scores.
There was a difference of 0.242 in the maximum value of
Zpairs between the analysis that ignored LD (bottom row)
and the Bayesian first-order Markov approach; in four out
of five chromosomes the location of the maxima of both
approaches differed not more than a few markers. The dif-
ference between the Bayesian FOMM approach and the
maximum likelihood (ML) FOMM approach was rela-
tively small, in agreement with the fact that the standard
deviation in the estimate of r2 was only 0.026 ± 0.021, as
computed from the Bayesian posterior distribution. As

Assessment of LD between markersFigure 1
Assessment of LD between markers. r2 was estimated for adjacent markers, every second marker, every third marker, 
and every tenth marker (denoted by respectively, Δ = 1, Δ = 2, Δ = 3, and Δ = 10). The left panel shows histogram of r2 over 
marker pairs for different Δ, the middle panel shows mean value of r2 as a function of Δ, and the right panel shows scatter plot 
of r2 as modeled by the FOMM vs. r2 as estimated from the data for Δ = 2.
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expected, the Bayesian FOMM approach had slightly
lower scores than the ML FOMM approach. On average,
the Bayesian first-order Markov approach had slightly
lower scores than the clustered markers (CM) approach of
MERLIN with threshold r2 < 0.10, but higher scores than
MERLIN with threshold r2 < 0.05 to define the clusters.
This suggests that the approaches are roughly in agree-
ment, but indicates the problem of specifying the thresh-
old for the clustered markers approach of MERLIN.

Figure 2 illustrates this for a region on chromosome 6,
where there was a large difference in the scores between
MERLIN with threshold r2 < 0.10 and MERLIN with
threshold r2 < 0.05, as well as a decrease in resolution due
to the fact that recombination between markers within a
cluster is assumed to be zero.

Discussion
Our data indicate that the FOMM found lower scores than
the approach that ignored LD. Further research using sim-
ulated data sets is required to assess how these differences
are related to false-positive and false-negative rates. An
advantage of the first-order Markov model approach is
that, in contrast with the other approaches, it does not
require the specification of a threshold below which link-
age equilibrium is assumed. The FOMM assumes that LD
decays exponentially with distance, whereas the clustered
markers approach assumes that the LD follows a block
structure. Whether the first-order Markov approach or the
clustered markers approach is most appropriate will
strongly depend on the type and density of the markers,
but this can be tested a priori. It would be interesting to
combine the clustered-markers approach and the first-
order Markov model approach, although for larger pedi-
grees the increased computational effort required may be
too high.

As shown, the FOMM can be combined with a Bayesian
procedure to allow for uncertainty and/or heterogeneity
in the model parameters. However, in the data set consid-
ered here we found that this did not have a large effect on
the linkage scores. In other populations this might not be
the case, for example due to strong population stratifica-

Comparison of approaches in the region on chromosome 6 with the highest scoreFigure 2
Comparison of approaches in the region on chromo-
some 6 with the highest score. Top panel show nonpara-
metric linkage statistic Zpairs and bottom panel shows 
estimated pair-wise LD correlation coefficient (r2) (black) and 
standard deviation (gray) as estimated from the posterior 
distribution over the LD parameters computed with the 
Bayesian FOMM approach.

Table 1: Comparison using all SNPs of chromosomes 1, 2, 3, 4, and 6

Absolute difference with respect to Bayesian

Mean difference with respect to Bayesian Mean Maximum Max Zpairs

Bayesian 1st order Markov NA NA NA 1.657
ML 1st order Markov 0.027 0.029 0.115 1.691
Clustered markers r2 < 0.10 0.067 0.093 0.914 1.724
Clustered markers r2 < 0.05 -0.118 0.231 1.498 1.424
Ind. SNPs r2 < 0.10 0.118 0.135 0.4963 1.816
Ignore LD 0.169 0.173 0.659 1.894
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tion. In the situation in which a smaller number of fami-
lies are available, it may also be more relevant to take into
account the uncertainty.

Conclusion
We conclude that the application of a first-order Markov
model to account for LD between adjacent markers is fea-
sible. For the data set we considered, the assumptions of
the FOMM appeared to be generally valid for the strong
levels of LD. The effect of accounting for uncertainty and/
or heterogeneity in the parameters of the first-order
Markov model in a Bayesian approach was small for this
data set.
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