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Abstract
A family-based association study design is not only able to localize causative genes more precisely
than linkage analysis, but it also helps explain the genetic mechanism underlying the trait under
study. Therefore, it can be used to follow up an initial linkage scan. For an association study of
binary traits in general pedigrees, we propose a logistic mixture model that regresses the trait value
on the genotypic values of markers under investigation and other covariates such as environmental
factors. We first tested both the validity and power of the new model by simulating nuclear families
inheriting a simple Mendelian trait. It is powerful when the correct disease model is specified and
shows much loss of power when the dominance of a model is inversely specified, i.e., a dominant
model is wrongly specified as recessive or vice versa. We then applied the new model to the Genetic
Analysis Workshop (GAW) 15 simulation data to test the performance of the model when
adjusting for covariates in the case of complex traits. Adjusting for the covariate that interacts with
disease loci improves the power to detect association. The simplest version of the model only takes
monogenic inheritance into account, but analysis of the GAW simulation data shows that even this
simple model can be powerful for complex traits.

Background
Linkage analysis is a useful tool for the initial exploration
of complex diseases, but is limited in its ability to localize
the loci potentially segregating for disease susceptibility.
Association analysis, which directly tests the association
between a trait and marker alleles, can more precisely
localize causative genes. For this purpose a family-based
association study design can be used to follow up an ini-
tial linkage scan. Moreover, it can help explain the genetic

mechanism underlying the trait because extended pedi-
grees provide more genetic information than a random
sample consisting of the same number of individuals.
Note also that the often-quoted paper by Risch and Meri-
kangas [1] for advocating an association study for detect-
ing genes of modest effect employed a family-based
association study design-in particular, using the transmis-
sion-disequilibrium test (TDT) [2] – showing it to be
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more powerful than a linkage analysis of affected sib
pairs.

There have been several ways proposed to conduct an
association study of a binary trait using general pedigrees
[3,4], and there have also been joint linkage and associa-
tion models proposed [5,6]. In this paper we propose a
logistic mixture model for an association study of binary
traits in general pedigrees. We first tested both the validity
and power of this new model by simulating nuclear fam-
ilies inheriting a simple Mendelian trait of monogenic
inheritance. We describe this initial study briefly before
applying the new model to the Genetic Analysis Work-
shop 15 (GAW15) simulated complex trait data; in partic-
ular, we examined the performance of the model when
adjusting for covariates in the case of a complex trait, as
this could provide information on familial residual corre-
lations due to common environmental sharing.

Methods
Denote by yi the phenotype (y ∈ {0, 1}, where 1 denotes
affected and 0 denotes unaffected) and by gi the genotype
of the ith individual in a pedigree of n members. The like-
lihood for the pedigree data Y = (yi) is given by a mixture
model:

where  denotes the conditional probabil-

ity that individual i has genotype gi given parental geno-

types if he or she is a non-founder, or the probability that
individual i has the genotype gi determined by population

genotype frequencies if he or she is a founder; and P(yi|gi),

the penetrance function, denotes the probability that indi-
vidual i has phenotype yi given genotype gi. The product of

these two factors is summed over all possible combina-
tions of genotypes for the pedigree members. Assume a
diallelic disease model with alleles D and d, where D is the

disease-predisposing allele, i.e., gi ∈ {DD, Dd, dd}. Define

the logit of the penetrance function, logit[P(yi = 1|gi)], to

be α + βgi + γMi + λXi, where Mi denotes the marker to be

tested for association and Xi denotes a vector of other cov-

ariates such as age and sex. Note that gi denotes the hypo-

thetical genotype at the putative disease locus, whereas Mi

denotes the actual genotype observed for the marker to be
tested for association. The constraint P(yi = 1|DD) = P(yi =

1|Dd) > P(yi = 1|dd) corresponds to a dominant model,

P(yi = 1|DD) > P(yi = 1|Dd) = P(yi = 1|dd) to a recessive

model, and

 to

an additive model. The likelihood can be calculated using
the Elston-Stewart [7] algorithm in the context of complex
segregation analysis. The significance of a marker can be
tested by comparing the likelihood with and without this
marker in the model logit. Because the finite sample-size
null distribution of the likelihood ratio test statistic is not
known, to determine the empirical significance level of a
particular observed result one can either perform a simu-
lation study based on the null hypothesis by generating
unassociated marker data for the sample at hand, or per-
form a permutation test (e.g., [8]). We classify the current
method as model-based because a penetrance function is
explicitly specified.

Initial simulation: simple traits

We first describe our initial simulation study, for which
we simulated nuclear families consisting of two parents
and four children. One diallelic marker was simulated
with the minor allele frequency (MAF) pD = 0.3, i.e., a

common variant corresponding to the case for which
association mapping is advocated [9], and the affection
status of all individuals was simulated under nine disease
models, covering the relative-risk spectrum from low to
high, with the minor allele of this diallelic marker the
same as the disease-predisposing allele (Table 1). Among
the nine models there were three models simulated under
each of dominant, recessive, and additive modes of inher-
itance. For example, a dominant model with penetrances
(f0, f1, f2) = (0.01, 0.03, 0.03) is denoted D3: D stands for

dominant mode of inheritance, 3 stands for f2 = 0.03, and

logit (fi) = α + βgi, where j denotes the number of copies

of the disease allele. Under each model random families
were generated and those with at least two affected chil-
dren were ascertained. In this way we generated 500 repli-
cate samples with 30 families in each sample data set. The
diallelic marker and pedigree structures were simulated
using the program SimPed [10]. Under the alternative
hypothesis of association, the affection status of individu-
als was simulated according to the penetrance functions
of each model; under the null hypothesis of no associa-
tion, the affection status was randomly simulated accord-
ing to a disease prevalence given by

.

According to an individual's genotype, in particular the
number of copies of the disease-predisposing allele, a gen-
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otypic value was assigned under the dominant, recessive,
or additive model, respectively. For simplicity, we
assumed Mendelian transmission probabilities and
known disease allele frequencies. We analyzed each data
set under three genetic models, i.e., dominant, recessive,
and additive models. The significance of association
between the trait and the diallelic marker was tested by fit-
ting models with and without the diallelic marker as a
covariate and then performing the likelihood-ratio test
(LRT). Theoretically, this LRT statistic should asymptoti-

cally follow a  distribution, and we report the empiri-

cal type I error rate under the null by calculating the
percentage of the 500 replicate p-values attaining the
nominal level of 0.05. Because the finite sample-size dis-
tribution of the LRT statistic is not known, we report a
power determined as the percentage of the 500 replicate
likelihood ratio statistics under the alternative larger than
the cut-off for the top 5% of the 500 replicate LRT statistics
under the null. We termed the current method SEGREG,
and, as a comparison, we also analyzed the same data sets
by another family-based association method [3], which is
called ASSOC. The analyses were performed using the pro-
grams SEGREG and ASSOC in the Statistical Analysis for
Genetic Epidemiology (S.A.G.E.) software suite, Version
5.2 [11].

Results
Simulation results
The two methods had very similar type I error rate and
power, though SEGREG showed slightly higher power in
most cases (Table 2); therefore we focus below only on the
SEGREG results. The empirical type I error rate at a nomi-
nal 0.05 significance level was found to be always far
below 0.05, regardless of the correctness of the model
assumptions. Under the alternative, assuming a correct
genetic model always results in more power than assum-
ing a wrong model, which was anticipated. However,

when analyzed under wrong assumptions, the power
depends on both the underlying true model and the
model assumed for the analysis. If the true disease model
is dominant, analysis assuming a recessive model has lit-
tle power; and if the true disease model is recessive, anal-
ysis assuming a dominant model has little power.
Analysis assuming an additive model usually has fair
power. However, in the case of the low penetrance disease
models D3 and R3, wrongly assuming an additive model
has power of only 0.530 and 0.450, respectively. Note,
however, that even the power on correctly assuming an
additive model is only 0.552 when the true model is A3.
When the true disease model is additive, analysis assum-
ing a dominant model is usually much more powerful
than that assuming a recessive model.

Application to the GAW15 simulated data: complex traits
Compared to our simulation of simple traits, the GAW15
simulation data provided an opportunity to test the new
model on a complex trait. In particular, we examined the
performance of the model when adjusting for covariates
in the case of the data simulating rheumatoid arthritis
(RA). Being aware of the answer to the simulated data that
smoking interacts with locus B (MAF = 0.35) on chromo-
some 8 and locus F (MAF = 0.50) on chromosome 11 to
increase susceptibility to RA, we performed an association
analysis screening for the binary RA trait loci on chromo-
somes 8 and 11 using all 100 replicates of the simulated
10 K SNP data. The empirical power at a nominal 0.05 sig-
nificance level for loci B and F was determined by compar-
ing the likelihood ratio statistics to the distribution of
statistics for the disease-unassociated markers SNP1_3
(MAF = 0.35) and SNP1_4 (MAF = 0.50), respectively. Age
and sex were always included as covariates, and we com-
pared the results with and without adjusting for smoking.
To mimic a real situation, we only chose the first 100
nuclear families in each replicate for this study. Markers
on chromosome 8 and SNP1_3 were coded with the
minor allele dominant and markers on chromosome 11

χ1
2

Table 1: Parameter settings for simulating disease models

Disease modela f0b f1b f2b pD
c Prevalence

D3 0.010 0.030 0.030 0.300 0.020
D6 0.010 0.060 0.060 0.300 0.036
D9 0.010 0.090 0.090 0.300 0.051
R3 0.010 0.010 0.030 0.300 0.012
R6 0.010 0.010 0.060 0.300 0.015
R9 0.010 0.010 0.090 0.300 0.017
A3 0.010 0.020 0.030 0.300 0.016
A6 0.010 0.035 0.060 0.300 0.025
A9 0.010 0.050 0.090 0.300 0.034

aD, R and A denote (for the minor allele) dominant, recessive, and additive modes of inheritance, respectively.
bfj denotes the penetrance of a genotype with j disease-predisposing alleles.
cDisease-predisposing allele frequency.
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and SNP1_4 were coded in an additive fashion, corre-
sponding to the fact that loci B and F were simulated
under dominant and additive models, respectively.

Without adjusting for smoking, the power of detecting
loci B and F was 0.33 and 0.45 respectively, whereas the
power increased to 0.35 and 0.56 after taking this covari-
ate into consideration.

Discussion
The new method is illustrated here on the full likelihood
function of a pedigree, which is usually ascertained
according to the phenotypes of probands instead of ran-
dom sampling, and so, without appropriate ascertain-
ment correction, the parameter estimates may be biased;
however, this does not affect validity for testing the signif-
icance of association as a generalized linear model,
though proper parameter inference can be made only
when correcting for ascertainment or building the model
on a conditional likelihood [12,13]. The LRT using large
sample theory was very conservative for both SEGREG
and ASSOC in the current study. We speculate this is
because of the small sample size and we hypothesize that,
as the sample size increases, the type I error rate will come
closer to the nominal level. This topic awaits further inves-
tigation.

As a model-based approach, our method requires pre-
specifying a genetic model and explicit penetrance func-
tions. According to the simulation study, great power loss
occurs when the dominance of a model is inversely speci-
fied, i.e., a dominant model is wrongly specified as reces-
sive and vice versa, which is similar to the situation in

model-based linkage analysis [14]. This is no surprise,
because both are built on the full likelihood function of a
pedigree. In general, the results suggest using an additive
model in practice. However, in the common variant low
penetrance scenario (D3, R3, A3), under the true genetic
mechanism both dominant and recessive models have
appreciably higher power than an additive model (0.828,
0.646, and 0.552, respectively). The fundamental reason
for this lies in the three components of the mixture distri-
butions not being as easily distinguishable as two compo-
nents in the case of low penetrance. It is of interest to note
that ASSOC, as a model-free method in the sense that no
penetrance function is specified, shows similar sensitivity
to the marker coding scheme as SEGREG. Because most
association methods require coding SNPs in a dominant,
recessive, or additive fashion, we speculate that this obser-
vation is applicable to most methods. Therefore, caution
should be taken when coding markers regardless of the
method employed to test association.

Detecting variants of modest effect remains a challenge for
association studies, especially in the case of rare variants,
which were not even simulated in the current study. For
the GAW simulation data, the proposed method showed
more power in detecting locus F than in detecting locus B.
The effect of locus F was simulated via a variance-compo-
nent method for the continuous trait IgM, which in turn
affected the RA trait, whereas the effect of locus B was sim-
ulated under a dominant model with relative risk equal to
1.5. There is no direct way to compare their effect sizes.
Because only locus F was fairly detected, we speculate that,
if measured on the same scale, the effect size of locus B
would be much more moderate.

Table 2: Empirical type I error rate at a nominal 0.05 significance level and power at an estimated 0.05 significance level under various 
assumed genetic models, based on 500 replicate samples

Analysis model

Dominant Recessive Additive

SEGREG ASSOC SEGREG ASSOC SEGREG ASSOC

Simulati
on 

model

Type I 
error

Power Type I 
error

Power Type I 
error

Power Type I 
error

Power Type I 
error

Power Type I 
error

Power

D3 0.006 0.828 0.006 0.818 0.014 0.074 0.010 0.080 0.000 0.530 0.000 0.524
D6 0.016 0.988 0.016 0.986 0.030 0.062 0.018 0.056 0.004 0.852 0.004 0.824
D9 0.004 1.000 0.004 1.000 0.022 0.058 0.022 0.068 0.004 0.940 0.002 0.914
R3 0.004 0.036 0.004 0.036 0.030 0.646 0.024 0.706 0.006 0.450 0.004 0.468
R6 0.008 0.030 0.010 0.028 0.020 0.998 0.022 1.000 0.002 0.978 0.004 0.982
R9 0.016 0.064 0.016 0.056 0.018 1.000 0.018 1.000 0.010 0.996 0.012 1.000
A3 0.012 0.468 0.012 0.462 0.022 0.232 0.020 0.250 0.001 0.552 0.002 0.546
A6 0.008 0.844 0.008 0.838 0.030 0.324 0.022 0.352 0.012 0.874 0.012 0.854
A9 0.010 0.944 0.014 0.936 0.016 0.550 0.010 0.574 0.001 0.962 0.004 0.960
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The main limit of our method lies in its assumption of a
monogenic disease mechanism without allowing for
familial correlation due to polygenic and/or common
environmental effects, which is unrealistic for complex
diseases (though widely adopted by most methods in the
literature). Model-based methods should use models that
approximate the complexity of the disease being studied
in order to be both robust and powerful. Analyses by
models that ignore residual familial correlation can result
in decreased power; how to model the familial correla-
tions is a topic for further investigation, though we could
easily incorporate covariates that resemble the action of
familial correlations into the current model.
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