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Abstract
Heterogeneity poses a challenge to linkage mapping. Here, we apply a latent class extension of
Haseman-Elston regression to expression phenotypes with significant evidence of linkage to trans
regulators in 14 large pedigrees. We test for linkage, accounting for heterogeneity, and classify
individual families as "linked" and "unlinked" on the basis of their contribution to the overall
evidence of linkage.

Background
Microarray technology makes it possible to measure the
expression levels of thousands of genes simultaneously.
The abundance of expression data has prompted the study
of natural variation among humans in baseline gene
expression [1-3], including an examination of the genetic
determination of gene expression. In a number of studies,
gene expression has been treated as a quantitative trait
and conventional methods for quantitative trait locus
(QTL) mapping have been applied [4,5]. Here, we analyze
selected expression phenotypes from the Genetic Analysis
Workshop 15 (GAW15) Problem 1 data. Quantitative
traits, such as expression phenotypes, are often assumed
to be determined by multiple loci. Locus heterogeneity
poses a challenge for QTL mapping. When assessing the

statistical evidence of an expression phenotype with a sin-
gle marker, we assume there are two types of families:
those whose within-family variation is due to segregation
of a QTL linked to the marker ("linked" families) and
those whose variation is not ("unlinked" families). The
presence of the unlinked families potentially reduces the
ability of most statistical methods to detect linkage. Pre-
sumably, these families are either not segregating for the
trait and are, therefore, uninformative for linkage, or the
phenotypic variation in those families is explained by seg-
regation of a QTL located elsewhere in the genome.

Here, we use a statistical model that accounts for hetero-
geneity and apply our method to follow up linkage evi-
dence of trans regulators of gene expression. More
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specifically, we use a latent class extension of Haseman-
Elston (H-E) regression developed by Bastone et al.
(unpublished work) that accounts for heterogeneity with
respect to linkage. This method includes a classification
procedure that is used to determine which individual fam-
ilies are segregating and therefore contribute to the overall
evidence of linkage.

The materials and data for this study were previously
described by Morley et al. [4]. Gene expression values and
single-nucleotide polymorphism (SNP) genotypes were
obtained from cell lines derived from 14 large CEPH
(Centre d'Etude du Polymorphisme Humain) pedigrees.
In the original study, Morley et al. employed a genome-
wide linkage mapping approach to detect both of the two
possible classes of expression regulators: cis and trans reg-
ulators. The 142 expression phenotypes exhibiting linkage
evidence that achieved genome-wide significance were
further classified as cis and trans, based on the location of
the linked SNP marker relative to that of the expressed
gene. Here, we expand upon the findings of Morley et al.
[4] using data for the 5 expression phenotypes with the
strongest statistical evidence of trans linkage (Table 1 of
Morley et al. [4]). We refer to these as the "singleton" phe-
notypes.

In a second analysis, we analyze data for a set of 29 phe-
notypes mapping to the putative "master regulator" on
14q32 (Figure 2 of Morley et al. [4]), and a set of 24 phe-
notypes mapping to a second putative master regulator on
20q13. We refer to these as the "chromosome 14", and
"chromosome 20" phenotypes, respectively. Because the
genes with putative QTLs on chromosome 14 and chro-
mosome 20 are located elsewhere in the genome, they
represent a special case of trans-regulated phenotypes,
grouped together due to the fact that several expression
phenotypes mapped to the same 5-Mb window.

Methods
We used a latent class linkage approach to detect hetero-
geneity among families in terms of two latent classes, one
of which is tested for linkage (i.e., "linked class"), using an

extension of Haseman-Elston (H-E) regression. Using an
empirical Bayes approach, we then estimated the poste-
rior probability that each of the families is a member of
the linked class. On the basis of these probability esti-
mates, we classified each individual family into one of the
two latent classes. For the singleton phenotypes, we used
the family class assignments to repeat the linkage scan,
stratified by family type. The stratified genome scan
allows us to ask several questions regarding the linkage
evidence. First, we used the results to test our method and
support the plausibility of the class assignments. Second,
on the basis of these class assignments, we estimated how
many families are contributing substantially to the overall
evidence of linkage. Finally, we looked for additional
QTLs by determining whether the evidence for linkage
elsewhere in the genome increases in the remaining fami-
lies.

Haseman-Elston regression
Haseman and Elston [6] describe the regression ("H-E
regression") that is performed in each of the two latent
classes. H-E regression involves regressing a function (Y)
of the phenotype values of two siblings on the number of
alleles shared identically by descent (IBD) (X) between
the two siblings at a marker. We refer to this as the mar-
ginal, or one-class, regression model. Here, we use the
squared difference as the outcome variable in H-E regres-
sion. Several authors discuss the use of other phenotype
functions, including mean-corrected products and
weighted combinations of squared sums and differences.
Because these phenotype functions typically rely on calcu-
lating means or residuals based on the marginal model,
their use in a latent class model is not straightforward and
could potentially introduce bias or decrease the power of
the method to detect the latent classes. Therefore, our
latent class extension of H-E regression was developed
using the squared phenotypic difference as the outcome
variable and for the results to be directly comparable, we
use the squared difference in the one-class model as well.

We fit the one-class model using generalized estimating
equations and a working correlation structure with two

Table 1: Results of latent class analysis of linkage

Class 1 "unlinked" families Class 2 "linked" families

Phenotype Chromosome with 
trans peak

Marginal (One-class) slope 
(p-value)

Slope No. of families in Class 1 Slope (p-value) No. of families in Class 2

ALG6 19 -0.04 (<0.001) -0.01 12 -0.17 (<0.001) 2
CBR1 15 -0.67 (0.002) 0.12 11 -3.10 (<0.001) 3
DSCR2 9 -0.07 (<0.001) -0.02 11 -0.27 (0.015) 3
HOMER1 9 -0.42 (<0.001) -0.13 11 -1.31 (<0.001) 3
TNFRSF11A 3 -0.93 (0.067) 0.08 12 -4.04 (0.001) 2

"Linked" and "unlinked" families were identified for the five expression phenotypes that showed strongest evidence of linkage in trans.
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correlation parameters for sib pairs that share zero or one
individual in common, as implemented in S.A.G.E. [7].
For each expression phenotype, we performed a genome
scan (one-class model) in all 14 families.

Latent class model
Latent class methodology assumes that the distribution of
the outcome variable (i.e., phenotype function) is a mix-
ture of two or more parametric distributions. Let S be a
multinomial variable indicating class membership of a
given family, with probability of membership for latent
class s of πs = P(S = s), s = {1, 2}. For class s, we assume a
linear H-E regression model for the squared phenotypic
difference, conditional on latent class and IBD sharing at
the marker: E[Y|X, S = s] = αs + βs *X. We assume the mar-
ginal density of the outcome variable is a mixture of the
conditional densities within the latent classes, such that
the marginal mean is E[Y|X]= ∑s πs (αs + βs *X). Y is
regressed on X within each class, and a test for linkage is
based upon the magnitude of the regression slope in the
segregating class. The null hypothesis that the regression
slope in this class equals zero, is tested against the one-
sided alternative that the regression slope was less than
zero. Empirical Bayes estimates of the parameters in the
latent class model were used in turn to estimated the pos-
terior probability that a given family is in latent class s, P(S
= s|Y, X). We estimated the probability of membership in
the "linked" class for each family and subsequently assign
families to their more likely class.

Based on the results of the one-class model, we select the
single SNP exhibiting the maximum evidence of linkage
with the trait and obtain multipoint IBD sharing informa-
tion using Merlin [8]. The raw phenotype values were con-
verted to squared differences for all possible sib pairs per
family. The parameters of the latent class model were esti-
mated using the maximum likelihood method. Maximi-
zation was carried out using a general quasi-Newton
procedure implemented by SAS PROC TRAJ (v.8) using
the NOVAR option to omit calculation of standard error
estimates [9]. The genetic hypothesis of linkage requires
an additional assessment of a significant negative slope in
one of the latent classes ("linked" class). The significance
of the class-specific slope in the linked class was tested by
permuting the IBD sharing within each family, re-fitting
the latent class model, and comparing the minimum
slope in the original data to that in each set of permuted
data. Our permutation approach preserves both the clus-
tering by family and any potential correlations among sib
pairs within a family.

Results
Primary analysis
Evidence of heterogeneity was detected under the linkage
model for all five singleton phenotypes. More specifically,

in the two-class model, all phenotypes exhibited evidence
of a zero slope in one class, and a statistically significant
negative slope in the other ("linked") class (See Table 1).
For all phenotypes, the estimate of the slope in the
"linked" class is more negative than that of the "marginal"
slope (i.e., the slope obtained in the one-class model). As
one would expect, the marginal slope appears to be an
average of the negative and zero slope in the two classes.

We assigned each family to its more likely class, on the
basis of estimates of family-specific probabilities of latent
class membership. In general, the classes were well sepa-
rated, with estimates of class membership probabilities
close to zero and one. For families classified as "linked",
the estimates of the probability of membership in the
"linked" class ranged from 0.918 to 1.000, with a mean of
0.988. For families classified as "unlinked", the estimates
ranged from 0.000 to 0.024, with a mean of 0.001. We
found that relatively few families (i.e., two or three fami-
lies) contribute to the overall evidence of linkage, despite
the strong marginal effect. This suggests that for these five
phenotypes, we detected QTLs with relatively rare alleles
with strong effects.

We repeated the linkage scans for each class separately.
Figure 1 shows the full-sample and class-specific linkage
scans for all five phenotypes, using markers on the trans
peak chromosome. The stratified scans were implemented
in S.A.G.E. [7]. These graphs suggest that we can effectively
use the latent class model to identify the subset of families
that provide most of the evidence of linkage.

In addition to the chromosome-specific linkage scan, we
performed a stratified, genome-wide linkage scan for each
singleton phenotype. By omitting those families whose
phenotypic variation is already explained ("linked" fami-
lies above), we might have more power to detect addi-
tional QTLs. This reasoning assumes that, for example,
when families in the sample are segregating for two dis-
tinct QTLs, individual families will be segregating for one
or the other, but not both QTLs. Of course, this is not nec-
essarily true. However, if the less common allele at each of
the QTLs is rare, it may be a good working assumption. In
the linkage scans, the evidence for linkage is measured by
the negative log p-value from H-E regression. The maxi-
mum new negative log p-value in "unlinked" families
ranged from 3.3 for CBR1 (increased from 0.3 in all fam-
ilies) to 4.1 for DSCR2 (increased from 2.2 in all families).
In the original analysis, Morley et al. [4] used two different
levels of stringency for determining the genome-wide sig-
nificance of evidence for linkage. A negative log p-value of
4.4 was used as a less stringent threshold. Thus, while the
evidence of linkage to other regions in the genome did
increase in the "unlinked" families, none of the new link-
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age peaks achieved genome-wide significance by this cri-
terion.

Secondary analysis
We next applied the latent class method to the chromo-
some 14 and 20 phenotypes. Specifically, we analyzed
data for 29 phenotypes with significant evidence of link-
age to a 5-Mb region on chromosome 14. Again, we found
that a relatively small number of families contributed to
the overall evidence of linkage (range 1 to 7, average 2.4).
In fact, for 12 phenotypes, only one family is classified as
"linked". Surprisingly, a single family (CEPH 1418) is
classified as "linked" for all phenotypes. We repeated a
linkage scan removing that family and found that only
one phenotype continued to exhibit linkage to chromo-
some 14. We compared the expression values of Family
1418 to those of the other families and found the mean
and range of expression values to be quite similar. Thus,
there is nothing remarkable about this family with respect
to phenotypic values. The strong dependence of the link-
age findings on this family might indicate a relatively rare

allele at a QTL with a very strong effect, detected primarily
in one family.

We repeated the analysis described above for 24 expres-
sion phenotypes with significant linkage to a 5-Mb region
on chromosome 20. In contrast to the results for the chro-
mosome 14 phenotypes, we found that different families
contribute linkage evidence for different phenotypes. All
families contribute evidence for at least two phenotypes
and the maximum number of phenotypes to which one
family contributes is 14. In general, somewhat larger
numbers of families contributed to the evidence of link-
age for the chromosome 20 phenotypes (range 1 to 9,
average 3.6), as compared to the chromosome 14 pheno-
types.

Conclusion
We applied a latent class extension of H-E regression to
evaluate heterogeneity and linkage of expression pheno-
types to trans regulators of gene expression. The family
classification procedure under the latent class model

Linkage scans stratified by family typeFigure 1
Linkage scans stratified by family type. Families were classified as "unlinked" or "linked" and class-specific linkage scans 
were carried out only for the chromosome on which the strongest evidence for linkage in trans was found.
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allows us to estimate which families are contributing to
the overall evidence of linkage. A key feature of the latent
class approach is that it provides a means for classifying
families by fitting a single model. One could imagine an
alternative approach in which the linkage analysis was
repeated for all possible combinations of families in order
to find the subset of families for which the evidence of
linkage was strongest. However, this alternative approach
would introduce a substantial multiple-testing problem
that is avoided by our unified latent class approach.

We used the family class assignments that follow from the
latent class model to estimate the number of families con-
tributing to the overall evidence for linkage. We also used
the procedure to identify influential families ("linked"),
thereby identifying a subset of families ("unlinked") in
which to look for additional QTLs. For all five phenotypes
considered here, we found that a small number of families
were classified as "linked". The fact that for those genes,
significant evidence of linkage was found in the one-class
model is likely due to the large sibship size in the CEPH
families and the fact that alleles at QTLs regulating gene
expression may have relatively large effects. We applied
the latent class model to target genes that were pre-
selected based on the results of Morley et al. [4]. Deter-
mining under what conditions the latent class model may
have more power to detect linkage in the absence of sig-
nificant evidence of linkage in the marginal model is a
topic of future research. In sets of data with substantially
smaller sibships (e.g., two to four offspring per family),
our latent class model can be applied, but it is likely that
larger sample sizes (more families) will be required in
order to have adequate power to detect linkage.

Linkage between expression phenotypes and putative cis
and trans regulators has been detected in various studies.
In a number of cases, the linkage findings for cis regulators
have been supported by subsequent analyses. For exam-
ple, Morley et al. [4] found strong evidence of association
between SNP markers and expression phenotypes that
have evidence of linkage to a cis regulator. In contrast, val-
idating evidence of linkage to trans regulators by associa-
tion methods has been difficult and the genetic dissection
of trans regulators remains a challenge. It is likely that
genetic heterogeneity contributes to the difficulty of iden-
tifying trans regulators. Methods such as the one applied
in this study that appropriately model genetic heterogene-
ity may improve our ability to map trans regulators and,
ultimately, increase our understanding of the genetics of
gene expression.
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