BMC Proceedings

Oral presentation Open Access

Astrocyte gp | 30-expression is critical for the control of *Toxoplasma* encephalitis

Katrin Drögemüller¹, Ulrike Helmuth¹, Anna Brunn², Monika Sakowicz-Burkiewicz^{1,2}, Dirk Reinhold³, David H Gutmann⁴, Werner Mueller^{5,6}, Martina Deckert² and Dirk Schlüter*¹

Address: ¹Institut für Medizinische Mikrobiologie, OvG Universität Magdeburg, 39120 Magdeburg, Germany, ²Abteilung für Neuropathologie, Universität zu Köln, 50937 Köln, Germany, ³Institut für Immunologie, OvG Universität Magdeburg, 39120 Magdeburg, Germany, ⁴Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA, ⁵Helmholtz-Zentrum für Infektionsforschung, 38124 Braunschweig, Germany and ⁶University of Manchester, Manchester, UK

Email: Dirk Schlüter* - dirk.schlueter@med.ovgu.de

© 2008 Drögemüller et al; licensee BioMed Central Ltd.

from Infectious diseases of the nervous system: pathogenesis and worldwide impact Paris, France. 10-13 September 2008

Published: 23 September 2008 BMC Proceedings 2008, 2(Suppl 1):S10

This abstract is available from: http://www.biomedcentral.com/1753-6561/2/S1/S10

Toxoplasma (T.) gondii infects astrocytes, neurons and microglia cells in the CNS and, after acute encephalitis, persists within neurons. Robust astrocyte activation is a hallmark of Toxoplasma encephalitis (TE); however, the in vivo function of astrocytes is largely unknown. To study their role in TE, we generated C57BL/6 GFAP-Cre gp130fl/ fl mice, which lack gp130, the signal transducing receptor for IL-6 family cytokines, in their astrocytes. In TE of wildtype mice, the gp130 ligands IL-6, IL-11, IL-27, LIF, oncostatin M, ciliary neurotrophic factor, B cell stimulating factor, and cardiotrophin-1 were upregulated. In addition, GFAP+ astrocytes of gp130fl/fl control mice were activated, increased in number, and efficiently restricted inflammatory lesions and parasites, thereby, contributing to survival from TE. In contrast, T. gondii-infected GFAP-Cre gp130fl/fl mice lost GFAP+ astrocytes in inflammatory lesions resulting in an inefficient containment of inflammatory lesions, impaired parasite control and, ultimately, a lethal necrotizing TE. Production of IFN-gamma and IGTP, which mediate parasite control in astrocytes, were even increased in GFAP-Cre gp130fl/fl mice indicating that instead of the direct anti-parasitic effect the immunoregulatory function of GFAP-Cre gp130fl/fl astrocytes was disturbed. Correspondingly, in vitro infected GFAP-Cre gp130fl/fl astrocytes inhibited growth of T. gondii efficiently after stimulation with IFN-gamma, whereas neighbouring non-infected and TNF-stimulated GFAP-Cre gp130^{fl/fl} astrocytes became apoptotic. Collectively, these are the first experiments demonstrating a crucial function of astrocytes in CNS infection.

^{*} Corresponding author