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Abstract

Breeding values for animals with marker data are estimated using a genomic selection approach
where data is analyzed using Bayesian multi-marker association models. Fourteen model scenarios
with varying haplotype lengths, hyper parameter and prior distributions were compared to find the
scenario expected to give the most correct genomic estimated breeding values for animals with
marker information only. Five-fold cross validation was performed to assess the ability of models
to estimate breeding values for animals in generation 3. In each of the five subsets, 20% of
phenotypic records in generation 3 were left out. Correlations between breeding values estimated
on full data and on subsets for the "leave-out" animals varied between 0.77-0.99. Regression
coefficients of breeding values from full data on breeding values from subsets ranged from 0.78—
1.01. Single-SNP marker models didn't perform well. Correlations were 0.77-0.89 and predicted
breeding values were biased. In addition the models seemed to over fit the genomic part of the
variation. Highest correlations and most unbiased results were obtained when SNP markers were
joined into haplotypes. Especially the scenarios with 5-SNP haplotypes gave promising results
(distance between adjacent SNPs is 0.1 cM evenly over the genome). All correlations were 0.99
and regression coefficients were 0.99—1.01. Models with 5-SNP markers seemed robust to hyper
parameter and prior changes. Haplotypes up to 40 SNPs also gave good results. However, longer
haplotypes are expected to have less predictive ability over several generations and therefore the
5-SNP haplotypes are expected to give the best predictions for generations 4-6.

Introduction viduals with marker information. We focus on how hyper
We present an approach for genomic selection (GS) where ~ and prior parameters and haplotype length affect the
the data is analysed using Bayesian multi-marker associa-  GEBV. A cross validation in generation 3 is used to evalu-

tion models. The analysed data is the QTLMAS XII com-  ate the optimal model.
mon data set described in [1]. The aim is to get accurate
genomic estimated breeding values (GEBV) for all indi-
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Scenarios

Fourteen scenarios were analysed. The models had haplo-
type lengths of 1, 2, 5, 10, 20, and 40 SNPs. A two-mixture
truncated normal distribution was used as prior for scal-
ing factors that model the explained standard deviation
per marker. We varied the proportion of markers to model
the genetic effect and the prior parameter that determines
the expected size of their scaling factors. The characteris-
tics for each scenario are given in Table 1.

Analysis model

The model uses phenotypes and genotypes from all indi-
viduals. Linkage phases of haplotypes are assumed to be
known without error. The Bayesian model estimates allele
substitution effects at all m markers, with g; alleles at
marker i, as:

y=1lu+Z; $Zx;Bi+e i=1,mandj=1,¢;

Here y is a vector of observations, 4 is a general mean, x;;
is a design vector indicating how many copies of the jth
allele of marker i are present in each observation, B;is the
allele substitution effect of the jth allele of marker i, and e
is a vector of model residuals, e~vN(0, Ic,2). Allele effects
are modelled as random with 3;vN(0,1) and ¢;is a scaling
factor that models the variance explained by ith marker.
The scaling factor can be interpreted as a standard devia-
tion. A Bayesian variable selection method utilises a prior
mixture distribution to select if certain model compo-
nents are included in the model. To implement a selection
on the level of markers, we chose a prior mixture distribu-
tion on the scaling factor ¢. The specification of the
remaining prior distributions is:

Table I: Starting parameters and estimates for the scenarios.
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U ~ constant
Gez ~ constant
2
o N(0,0)
7Z'1N(0,0'521), 0, >0, =1-m,

The prior mixture distribution for scaling factors ¢, follows
the Bayesian variable selection method proposed by [2]
where a large portion (7,) of ¢s is forced to come from a
distribution with small variance cs,?, while only a small
fraction (7, = 1 - ) of ¢'s is allowed to have big effects
coming from a distribution with large variance os,2. The
model is augmented with mixture indicators y = {v;}, indi-
cating whether the ith scaling factor comes from the first
component of the mixture (y; = 0) or from the second
component of the mixture (y;= 1).

Obtaining parameter estimates

A MCMC sampler was used to generate samples from the
joint posterior distribution of the model parameters f(z,
¢, B, v, 6.2|y). The fully conditional distributions for 4, ¢/'s
and B;'s are all Normal and the sampling of ¢;'s is an alter-
nation between two two normal distributions. The condi-
tional posterior distributions of the mixture indicators (7)
are Bernouilli [2] and the conditional posterior distribu-
tion for residual variance is scaled inverse chi-square [3].
For all parameters single-variate Gibbs samplers were
implemented. To obtain genomic predictions, MCMC
chains were run in two steps. Aim of the first step was to
get a good estimate of the hyper parameter os;. MCMC
chains for the full data were run with 10,000 cycles of
which 3,000 burn-in; parameter samples were saved for

Scen. Hap. Length ba Iststep os, 2nd step o3, ngenom Peorr h? Corragen3 Reg2 gen3

| | 0.10 1.0 1.8 3.92 4.61 0.46 0.77 0.80
2 | 0.05 * 0.2 391 4.68 0.45 0.86 0.95
3 | 0.05 1.0 3.0 3.75 4.68 0.45 0.89 0.85
4 | 0.05 1.0 1.4 3.60 464 044 0.82 0.78
5 | 0.01 1.0 2.8 3.45 474 042 0.83 0.86
6 | 0.001 1.0 24 3.57 5.07 0.41 0.88 0.90
7 2 0.05 1.0 0.8 1.89 342 0.36 0.97 0.99
8 2 0.005 1.0 0.8 2.36 3.82 0.38 0.89 091
9 5 0.05 Optimize 0.17 1.55 3.09 0.33 0.99 1.01
10 5 0.01 Optimize 0.19 1.48 3.10 032 0.99 0.99
I 5 0.01 1.0 0.30 1.49 3.12 0.32 0.99 1.00
12 10 0.02 Optimize 0.23 1.50 3.08 0.33 0.98 0.99
13 20 0.04 Optimize 0.24 1.49 3.10 0.32 0.99 0.99
14 40 0.08 Optimize 0.24 1.53 3.05 0.33 0.97 0.99

a GEBV of full data vs. GEBV of joint predicted data.

*Scenario 2 omits the |ststep.
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each 100t cycle. In the second step GEBV were estimated
with a fixed setting for s, and leaving out certain pheno-
types (see "Cross validation" below). For the models with
haplotype length >= 5 the optimal os, estimated from the
first step were used as known os,. For models with haplo-
type length 1-2, due to failure in estimating os, at the first
step, best os; was assumed equal to the largest ¢, obtained
from the first step. MCMC chains were run with 10,000
cycles, of which 3,000 burn-in for haplotype length 1-2
and 5,000 cycles of which 2,000 burn-in for larger length
of haplotypes.

Genomic predictions

GEBV were estimated for all individuals with marker
information. The GEBV were constructed in each MCMC
cycle as functions of the scaling factors ¢ and allele effects
B Let x;£ be extended versions of the design vectors with
allele information for all individuals, then posterior sam-
ples of GEBV (g*) for all these individuals are:

g =2;¢; ZinjE Bij*

where asterix (*) indicates samples from the posterior dis-
tribution. By constructing g as a function of joint (¢, B;)
samples within the MCMC, the covariances between ¢,
and B are automatically taken into account, and also the
posterior standard deviations of g can be obtained. The
final estimate for GEBV is the posterior mean obtained as
the mean of a set of g* samples. Predictive abilities of
genomic prediction models were assessed as the correla-
tion between GEBV from full data and GEBV from subsets
for the "leave-out" animals.

Cross validation

To evaluate combinations of hyper parameter, prior distri-
bution and haplotype length a five-fold cross validation
was performed. In each of five data subsets phenotypic
records were discarded for 2 out of 10 full sibs in genera-
tion 3, equal to 300 discarded records in each subset. Each
record was only discarded once, deleting the records for
full sibs 1-2 in the first cross validation data set, the
records for full sibs 3-4 in the second cross validation
data set, etc. Assuming that ordering of full sibs is random
within family; this is equivalent to a (stratified) random
deletion of records. Only records in generation 3 were dis-
carded, because this is closest to generations 4 to 6 where
GEBV were estimated from marker information only. For
each subset a genomic prediction was performed using
the same best estimate of 6s; and number of cycles as for
the genomic prediction on full data. From each subset
GEBV of the 300 individuals with discarded phenotypic
records were joined into a new dataset. This is called the
"joined predicted" data. In the "joined predicted" dataset
GEBV for all 1500 individuals in generation 3 were based
on marker information only, because the GEBV for each

http://www.biomedcentral.com/1753-6561/3/S1/S11

individual was retrieved from an analysis in which its own
data was discarded.

For generation 3 correlations between GEBV from the full
and joined predicted dataset and regression coefficient of
GEBV from full data on GEBV from joined predicted data
was computed. The best scenario is the one with highest
correlation and the regression closest to one.

Results

Table 1 summarizes the starting parameters and the esti-
mates in 14 scenarios. For all scenarios o5s,is 0.01. The sce-
narios differ in haplotype length and in the settings for 7,
and os, parameters, or in some cases included an estima-
tion of os; from the data. Genomic variance (&?y,),
error variance (o0?,,) and heritability (h2) are presented.
The correlation between GEBV from full and joined pre-
dicted data and the regression of GEBV from full data on
GEBV from joined predicted data in generation 3 are also
given.

For single marker models the correlations in generation 3
between GEBV obtained in full and joined predicted data
are 0.77-0.89, highest for Scenario 3. For Scenario 2-4 the
only differences are in the setting of os,. The largest ¢, of
the markers was used as o5, in Scenario 3 while the second
largest was used in Scenario 4. In Scenario 2, a value close
to the automatic optimized os, in the scenarios with
marker haplotypes was used to test if results were
improved. The regression coefficient is 0.78-0.95, which
indicates some bias. The lowest bias is found in Scenario
2. Table 2 shows that correlations between GEBV (for
individuals in generation 3) obtained for full data in the
six scenarios are 0.68-0.94, indicating that models are
sensitive to prior and hyper parameter settings. The pre-
sented single marker models do not perform well.

In the scenarios 7 and 8 with 2-marker haplotypes the
only difference is the setting of 7,. The estimates of vari-
ances are different, but heritabilities are similar. Correla-
tion and regression coefficients are higher than for single-
SNP analyses. The correlation between GEBV from full
data in the two scenarios is 0.96. The scenarios with 2-SNP
haplotypes perform better than single-SNP models.

Table 2: Correlations of GEBV in generation 3 between
scenarios for single-SNP models, based on full data.

Scenario | 2 3 4 5 6

1.00 0.68 0.86 0.77 091 0.61

1

2 1.00 0.86 0.94 0.77 0.90

3 1.00 0.91 0.89 0.81

4 1.00 0.84 0.90

5 1.00 0.68

6 1.00
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Scenarios 9 to 11 with 5-SNP haplotypes perform simi-
larly, independent of prior and hyper parameter settings.
Scenario 11 tests whether a large os; (using the largest ¢
from the first step) results in the same results as the opti-
mized os;. Variances and heritabilities are almost the
same, correlations and regression coefficients are almost
one. In generation 3, the correlations between GEBV from
full data in the three scenarios were all 0.99. The 5-SNP
haplotypes fit data well and without bias, and is robust to
changes in priors and hyper parameter.

Scenarios with 10, 20, and 40-marker haplotypes had sim-
ilar optimal os,, same variances and heritabilities. Corre-
lations and regression coefficients are all close to one. All
three models are expected to give good GEBV estimates.
Table 3 shows that correlations between the GEBV esti-
mated from the full data are 0.94-0.97.

Discussion

In this study we evaluated a Bayesian genomic prediction
model with different grouping of SNPs into haplotypes
and different settings of hyper and prior parameters. We
assess the predictive abilities of the models using a cross
validation in generation 3, assuming that the model
which reached the best predictions in generation 3 would
also be the model with the best predictions for genera-
tions 4 to 6.

Single-SNP models did not perform well. As shown in the
cross validation, the correlations for the single-SNP mod-
els are the lowest observed among the given scenarios and
the regression coefficients indicate bias. This was also
found by [4]. Also the variance components in the single
SNP models indicate bias and incorrect fitting of the data,
with larger genomic variance and larger residual variance.
This indicates that there must be a negative covariance
between genomic fits and residuals, which is a sign of over
fit. Overall, the single SNP models appeared variable and
difficult to setting optimal prior and hyper parameter. We
show that results from the single SNP model are relatively
sensible for the prior and hyper parameter settings, and
estimation of the hyper parameter os, from the data also
failed for the single SNP models, probably due to colline-
arity between SNPs. A possible explanation for poor per-
formance of the single-SNP model is that markers may not
be in complete linkage disequilibrium with a QTL. In

Table 3: Correlations of GEBV in generation 3 between
scenarios for 10, 20 and 40-SNP models, based on full data.

Scenario 12 13 14
12 1.00 0.97 0.94
13 1.00 0.96
14 1.00

http://www.biomedcentral.com/1753-6561/3/S1/S11

order to improve the single SNP model, probably lower
settings for the os, parameter are needed.

Models based on haplotypes of 5 SNPs and more gave
much better results. For these models, regressions indi-
cated absence of biases and estimates of variance compo-
nents were better: residual variance was smaller, which
indicates a better model fit, and the total fitted variance
was close to the raw variance in the trait. In these models
there is no numerical problem in estimating parameter
os, from the data. Using the o5, estimated from the data is
expected to give accurate and unbiased predictions.

Models based on 5-marker haplotypes are expected to give
the best estimates of GEBV in generation 4-6. In the eval-
uation shown here the 10 to 40-SNP models perform
equally well, but it should be noted that this is based on
predictions in generation 3. For predicting breeding val-
ues in generations 4-6, however, these larger haplotypes
may lose predictive ability quicker as shown by [4]. There-
fore we expect the 5 SNP haplotypes to retain the best pre-
dictive ability over the generations 4-6. For estimation of
GEBV in generation 4-6, Scenario 11 performs best with
a correlation on 0.99 and a regression of exactly 1.00.
GEBV from Scenario 11 are submitted for the workshop.

For scenario 11 the correlation between GEBV and true
breeding value (TBV) in generation 4-6 turned out to be
0.92; the regression of TBV on GEBV from the full data
was 0.98 indicating a small overestimation of GEBV. The
amount of variance in TBV explained by GEBV, R? was
0.84. Hence, the selected model predicted the data well
and gave nearly unbiased GEBV. The results can be found
in table 2 in [1].

The better results here from using haplotypes than single-
SNP is different from [5] in which IBD probabilities
between haplotypes were used and where the use of such
haplotypes gave similar results as the use of single SNPs.
All results are in table 2 in [1]. There are however a
number of differences between our approach and [5] in
the use of Linkage and Linkage Disequilibrium (LD) pos-
sibly resulting in differences in the use of population-wide
and family-specific effects. Our results show that signifi-
cant improvements can be made from using haplotypes
and that it is worthwhile to further investigate the use of
haplotypes for making genomic predictions.

Conclusion

We expect the most correct GEBV to be estimated in
Scenarioll, because the correlation between full and
joined data is 0.99 and the regression coefficient is 1.00.
The haplotype models perform better than single-SNP
models and are less sensitive to prior and hyper parameter
settings.
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