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Abstract
Background: Genome-wide association studies have successfully identified several loci underlying
complex diseases in humans. The development of high density SNP maps in domestic animal species
should allow the detection of QTLs for economically important traits through association studies
with much higher accuracy than traditional linkage analysis. Here we report the association analysis
of the dataset simulated for the XII QTL-MAS meeting (Uppsala). We used two strategies, single
marker association and haplotype-based association (Blossoc) that were applied to i) the raw data,
and ii) the data corrected for infinitesimal, sex and generation effects.

Results: Both methods performed similarly in detecting the most strongly associated SNPs, about
ten loci in total. The most significant ones were located in chromosomes 1, 4 and 5. Overall, the
largest differences were found between corrected and raw data, rather than between single and
multiple marker analysis. The use of raw data increased greatly the number of significant loci, but
possibly also the rate of false positives. Bootstrap model aggregation removed most of
discrepancies between adjusted and raw data when SMA was employed.

Conclusion: Model choice should be carefully considered in genome-wide association studies.

Background
Genome-wide association studies (GWAS) have success-
fully identified loci underlying several complex diseases
[1,2] and quantitative traits, like height in humans [3].
The development of high density SNP maps in domestic
animal species should allow the detection of QTLs for eco-
nomic important traits through association studies with

much higher accuracy than traditional linkage analysis.
The simplest method to analyze GWAS is single marker
association (SMA). Multiple marker analyses are also used
to reduce the numbers of false positives and to increase
power [4]. Nevertheless, the advantage of haplotype-
based methods upon SMA has not yet been proven. To
address this issue, we compare SMA with an haplotype-
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based method – Blossoc [5] – recently developed to take
advantage of high density SNP maps genotyped in large
sample sizes, still being fast and accurate in detecting
causal loci. Simulation studies have demonstrated that
this method outperforms SMA in a more complex situa-
tion such as mutation heterogeneity and complex haplo-
type structures [5]. We applied these two strategies to the
raw data and to the data corrected for infinitesimal (poly-
genic), sex and generation effects to evaluate to what
extent population structure (i.e., pedigree relationships)
and environmental effects could affect the results.

Methods
A total of 4665 animals with genotypes and phenotypes,
the first 4 generations of the data set provided by the QTL-
MAS Workshop [6], were included in the analyses.

Raw versus corrected data
Initially, association analyses were performed using the
raw data (Y = μ + SNP + e) fitted for each SNP. Next, the
data were analyzed with a mixed model including the
infinitesimal (a), sex (S) and generation (G) effects. Resid-
uals from this mixed model were then used as input data
in the haplotype-based analysis. For the corrected SMA,
we used the same mixed model except that the SNP effect
was estimated simultaneously: Y = μ + S + G + a + SNP +
e. Mixed model analyses were carried out with QxPak,
which employs a maximum likelihood approach [7].

Single Marker Association (SMA)
An additive model was initially tested at each SNP. We
first established a list of SNPs showing an association with
p < 10-8 (F-test), with the restriction that minimum dis-
tance between selected SNPs was 5 cM. When two signifi-
cant SNPs were found within a 5 cM region, the most
significant one was retained. However, not all of these
putative QTLs are necessarily genuine QTLs. Recently,
bootstrap model aggregation (bagging; [8]) was proposed
to control for false positives in genome-wide analysis
using complex crosses [9,10]. Hence, from the list of
selected SNPs, we bootstrapped the data and we built
multiple additive QTL models by forward selection. A
SNP was included in the model if its p-value, conditional
on all other SNPs already in the model, was lower than 10-

3, otherwise, the model building was stopped. We ran
1000 iterates. The frequencies of each SNP in the models
correspond to their support of being a true QTL, and are
called bootstrap posterior probabilities (BPP; [9]). To
speed-up the analysis, we considered a threshold of BPP ≥
0.25 for assigning a true association. It is important to
note that this threshold depends on the population and
the phenotype and requires specific calibration by simula-
tions. Therefore, 0.25 is here arbitrary and is likely to not
properly control false positives. These results are pre-

sented in Additional file 1. SMA and bagging were run
using a home made R script.

For the corrected-data SMA, an additive model was used
with the same p-value threshold and minimum distance
to select associated SNPs as with SMA on raw data. Signif-
icance tests in QxPak are based on likelihood ratio test.
Intensive computational procedures to further control for
false positives were not feasible with this mixed model
approach, nor with the haplotype-based analyses.

Multiple Marker Association (Blossoc)
Blossoc, a linkage disequilibrium (LD) association map-
ping tool, was used for the haplotype-based analyses. This
method attempts to build 'perfect' phylogenetic trees for
each marker and scores these according to non-random
clustering of affected individuals, judging high-scoring
areas as likely candidates for containing disease affecting
variation [5]. Although initially designed for case-control
studies, this method can also be applied to quantitative
traits. Blossoc was designed to handle very dense sets of
markers with high LD, so blocks of compatibility include
several markers. We used a window of a minimum of 10
markers for building the phylogeny around markers. Blos-
soc generates scores for each marker, but gives a smooth
curve, because neighboring markers are included to score
a locus, so scores for close markers are more dependent
than SMA. However, we expect that high clustering scores
from Blossoc are highly correlated to small P-values from
SMA, as demonstrated by Mailund et al. [5]. The Hannan
and Quinn criteria (HQ), which is similar to the Bayesian
Information Criterion (BIC), was used to indicate signifi-
cant association [5]. Threshold was established based on
corrected data and set at scores ≥15, which was reached by
7.3% of the SNPs. Selected peaks were also the local max-
imum in 10 cM regions along the genome.

Comparison among approaches
The agreement between methods and between data cor-
rections was based on the percentage of coincident associ-
ated SNPs. A coincident associated SNP pair or match was
defined as a pair of associated SNPs in two analyses whose
distance was shorter than 5 cM. The percentage of SNP
matches was calculated as the ratio between the number
of matches and the sum of the matches and the number
of SNPs uniquely detected by either of the two analyses to
be compared. The degree of concordance of matching
SNPs was the absolute difference in cM of the estimated
location of coincident SNPs between analyses.

Computational details
Analyses were performed on a Linux server with dual Xeon
processors and 8 Gb RAM. The total CPU time required
for the analyses is shown in the Additional file 2.
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Genome-wide association profile with single and haplotype-based association methods using different data modelingFigure 1
Genome-wide association profile with single and haplotype-based association methods using different data 
modeling. SMA with raw (a) and corrected data (b), and haplotype-based analysis with raw (c) and corrected data (d). The 
horizontal lines are the thresholds: P < 10-8 for SMA and HQ score >15 for Blossoc. The vertical dashed lines separate chro-
mosomes.
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Results and discussion
In general, both SMA and Blossoc performed similarly in
identifying the most strongly associated SNPs (Figure 1),
independently of the approach. About 10 loci with high
additive effects were identified to affect the trait (Table 1),
which had a polygenic heritability of 0.39. The most
strongly associated loci were located in Chromosomes 1,
4 and 5.

Raw versus corrected data
Incorporating known population structure into the phe-
notype modeling reduced the noisiness of the association
profile (Figure 1). Peaks were sharper with corrected than
with raw data for both SMA and Blossoc methods. Never-
theless, raw and corrected profiles were quite correlated (r
= 0.70 for SMA and r = 0.66 for Blossoc).

Three to five-fold more SNPs were selected using raw data
than with corrected data (Table 1). Nonetheless, all SNPs
selected with corrected data were recovered in the analyses
with raw data within each method. Disagreement, there-
fore, is mostly due to these additional SNPs. Selection

seems therefore more liberal on raw data. Additional pro-
cedures to control for false positives are clearly required.
The bootstrap model aggregating (bagging) is expected to
control such false positives. When applied to SMA on raw
data, the bagging reduced considerably the list of putative
QTLs from 33 to 15 (with a BPP ≥ 0.25). All but two of
these had BPPs higher than 0.6. Those two were not recov-
ered in the corrected data, nor were four SNPs with
medium to high BPPs, but the other SNPs were also
selected using the mixed model approach (Additional file
1). For Blossoc, an adjusted threshold for raw data (>65)
reduced the associated SNPs from 49 to 19.

Comparison between methods
Only ~50% of the SNPs detected using raw data coincide
between SMA and Blossoc methods. This percentage
increased to 67% when using corrected data. The disagree-
ment between the corrected methods was due to 4 SNPs:
SNP 331 was detected with SMA (QxPak). This SNP
showed high LD with SNP 402 (D' ≈ 1, r2 = 0.3), which
was highly associated with the phenotype. The equivalent
SNP in the SMA raw (323) showed low BPP (0.1). There-

Table 1: SNPs identified as associated with the phenotypic trait by different methods and approaches.

SNP (P-value) SNP (HQ-score) SMA Additive effect (SE)3

Chromosome SMA raw1 SMA corrected (QxPak) Blossoc raw1 Blossoc corrected raw corrected

1 196
(52.2)2

196
(33.0)

200
(215.7)

200
(75.4)

0.74
(0.05)

0.71
(0.06)

323
(16.9)*

331
(10.4)

- - 0.40
(0.05)

-0.69
(0.10)

415
(23.5)

402
(17.6)

416
(98.1)

402
(52.2)

0.46
(0.05)

-0.78
(0.09)

778
(14.9)

778
(11.5)

778
(51.7)*

778
(20.2)

0.40
(0.05)

0.40
(0.06)

2 1271
(15.8)

1270
(14.4)

1268
(94.6)

1267
(31.1)

0.36
(0.04)

0.43
(0.05)

1483
(28.3)

1483
(15.4)

1483
(113.2)

1487
(31.2)

-0.50
(0.04)

-0.45
(0.05)

3 2149
(17.2)

2133
(9.3)

2134
(65.8)

- -0.39
(0.04)

0.35
(0.06)

- - 2598
(37.9)*

2601
(17.6)

- -

4 3048
(35.9)

3033
(27.4)

3032
(237.4)

3032
(104.4)

0.54
(0.04)

0.59
(0.05)

3765
(44.9)

3765
(23.4)

3765
(183)

3765
(47.5)

0.62
(0.04)

0.55
(0.05)

3953
(17.0)

- 3952
(103.2)

3952
(15.6)

0.37
(0.04)

-

5 4935
(23.7)

4935
(29.8)

4940
(94.8)

4935
(68.7)

-0.47
(0.05)

-0.63
(0.05)

Total # SNPs 33/15 10 49/19 10

1 – For analysis with raw data, only SNPs that coincide with those obtained with corrected data are listed in this table. A complete list of SNPs 
detected using raw data is in the Additional file 1.
2 – Between brackets are the significance level for methods: -log10 (p-value) for SMA and HQ score for Blossoc. Threshold for SMA is P < 10-8 and 
for Blossoc is HQ Score ≥ 15. The * shows SNPs that would not be selected using a bootstrap posterior probabilities (BPP) < 0.25 for SMA raw and 
an adjusted threshold for Blossoc raw <65, with a total of 15 and 19 selected SNPs for each method, respectively (Additional file 1).
3 – The direction of the additive effects is from genotype 11 to 22.
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fore, SNP 331 is probably a false positive. SNP 3952 was
detected with Blossoc and also with SMA raw (BPP =
0.99), suggesting that it is a true QTL. The SNP identified
in the beginning of Chromosome 3 (2133) by the SMA
method (BPP = 0.89) was also detected with Blossoc on
raw data, but was not selected with Blossoc on corrected
data. This SNP showed a well defined peak with corrected
Blossoc, close to the significance threshold (HQ = 13).
Therefore, SNP 2133 is probably also a true QTL. These
results indicate that the thresholds defined here for both
SMA and Blossoc on corrected data might be too conserv-
ative. Another SNP towards the middle end of this chro-
mosome (2601) was detected only with Blossoc. This was
the most distinct result found between methods (Figure
1) and could reflect a difference between single and hap-
lotype-based methods, although the possibility of it being
a false positive can not be discarded.

The agreement in matching SNPs was lower when using
raw data (maximum distance of 4.1 cM), and increased
greatly when corrected data was used (maximum distance
of 0.4 cM). Nevertheless, the establishment of a threshold
is a complicated issue and has a profound influence on
the results, especially when methods with different nature
of scores are compared. Our results indicate that 8 SNPs
are confidently associated to the trait, as found by all

methods evaluated here with a small variation in cM
among coincident SNPs.

Interactions within and between loci and with sex
We also fit more complex models incorporating domi-
nance and epistasis (see Additional file 3 for methods).
Dominance was not significant in any SNP. Most signifi-
cant epistatic pairs are in Table 2. SNP 3295 showed a sug-
gestive effect (P-value = 2 × 10-5) of interaction with sex.
The additive effects of males and females were similar in
magnitude but of opposite sign.

Comparison with the true QTLs
Comparisons with the true simulated loci showed a simi-
lar overall performance of Blossoc and SMA, and major
differences related to the trait modeling (Table 3). Trait
modeling reduced false positives but also power, mainly
for loci with small effect. Blossoc had greater power than
SMA to detect loci with an effect size between 0.5 and 1%.
Threshold relaxation increases Blossoc power without
incorporating any additional false positives. Using a
higher threshold on Blossoc with raw data, similar power
is achieved for medium to large effect loci. Nevertheless,
this power is reduced for small effect loci, but allowing for
a better control of false positives. Bagging performs simi-
larly to approaches explicitly using the pedigree.

Table 2: Top significant epistatic interactions with P < 10-6 and distance between SNPs <10 cM.

Epistasis SNP_1 SNP_2 -log10 p-value r2 Distance

AxA 3512 3652 6.59 1.6 × 10-2 14 cM
3083 5023 6.32 5.8 × 10-5 Diff. chr
1002 5847 6.21 1.6 × 10-4 Diff. chr

AxD 1546 1652 6.58 2 × 10-2 19.1 cM
1843 3248 6.02 1.3 × 10-3 Diff. chr

DxA 1308 1411 6.12 1.1 × 10-2 10.3 cM
DxD 3939 5524 6.32 7.2 × 10-4 Diff. chr

r2 is the correlation between SNPs

Table 3: Proportion of true positives and power to detect true QTLs in each analysis.

Power2

Data Approach TP1 overall >1% [0.5–1]% <0.5%

Raw Blossoc (15)3 0.49 0.74 1 1 0.70
Blossoc (65) 0.68 0.42 0.87 0.71 0.24

SMA 0.61 0.65 1 0.71 0.55
SMA Bagging 0.87 0.40 1 0.71 0.18

Corrected Blossoc (15) 1 0.33 0.87 0.57 0.15
Blossoc (12) 1 0.40 1 0.71 0.18

SMA 1 0.35 0.87 0.43 0.21

1 – The proportion of true positives is the proportion of detected QTLs that were true. Positive match between detected and true QTLs was 
based on a maximum distance of 5 cM.
2 – Overall power is the proportion of true loci that were detected. This power is further subdivided according to QTL categories based on the 
true effect size: >1% (8 QTLs), between 0.5 and 1% inclusive (7 QTLs), and <0.5% (33 QTLs) of the total phenotypic variance.
3 – Numbers between brackets for Blossoc are the threshold used for selecting peaks.
Page 5 of 7
(page number not for citation purposes)



BMC Proceedings 2009, 3(Suppl 1):S9 http://www.biomedcentral.com/1753-6561/3/S1/S9
Conclusion
Both SMA and haplotype-based methods performed sim-
ilarly in detecting the most strongly associated SNPs. The
use of raw data increased the number of positive results in
comparison to corrected phenotypes. The concordance
among matching SNPs increased when using adjusted
data compared to raw data. The largest discrepancies
found in this study were between different phenotype
modeling rather than between single and multiple marker
approaches. Thus, model choice should be carefully con-
sidered in this kind of studies. Bagging seems a promising
approach to control for inflation and false positives when
the population structure is hidden.
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SNP: single-nucleotide polymorphism; QTL: quantitative
trait loci; SMA: single marker association; GWAS: genome-
wide association studies; LD: linkage disequilibrium; HQ:
Hannan and Quinn criteria.
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Additional material

Additional file 1
SNPs associated to the phenotype by SMA and Blossoc methods using 
raw data. Threshold for SMA is P < 10-8 and for Blossoc is HQ Score ≥ 
15. 1 – Bootstrap posterior probabilities of 1000 models for SMA raw of 
the 33 SNPs that pass the threshold of -log10(p) ≥ 8. * – Significant asso-
ciations, considering a BPP > 0.25 for SMA raw, decreased the number 
of associated SNPs to 15. Considering an adjusted threshold for Blossoc 
raw ≥ 65, to account for the inflation caused by the population structure, 
the number of significant associated SNPs decreased to 19.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1753-
6561-3-S1-S9-S1.pdf]

Additional file 2
Total CPU time required for the analyses, including the significance 
tests. 1 – a)1st step: 600 bins (179,700 interactions * 4 tests); b) 2nd step: 
top interactions with -log10(p) >3 for 675 pairwise locations to refine 
(67,500 interactions: 4 tests with an average of 169 pairwise locations to 
refine within 1 cM). 2 – Correction with mixed model including sex, gen-
eration and infinitesimal effects using QxPak. Note: Model aggregation 
using 1000 bootstrap samples on the 33 putative QTLs of the SMA raw 
took 4 h 37 m 46 s (Additional file 1). Analyses were performed on a 
Linux server with dual Xeon processors and 8 Gb RAM. From the pro-
grams used, only Blossoc was specifically dedicated to GWAS. The R-
Scripts for SMA, bagging and epistasis were not optimized to speed-up cal-
culation. Qxpak is a program initially dedicated to QTL mapping in live-
stock. SMA on raw data outperformed the two other approaches in the 
initial genome-scan. Blossoc is very fast considering a haplotype-based 
method. QxPak ran in a reasonable time considering its internal correc-
tion for the population structure. However, this time precludes using com-
putationally intensive procedures to control false positives. The bagging 
took about 4 h 38 m (33 candidate SNPs, 1000 models, on average 13.4 
SNPs per model). The proper calibration of the BPP will require S more 
times (S = number of simulations done for calibration). Nevertheless, 
strong code optimization will be straightforward and will dramatically 
reduce computing time. The two-step strategy for epistasis was reasonably 
efficient given the large number of interaction terms that were tested.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1753-
6561-3-S1-S9-S2.doc]

Additional file 3
Methods for Interactions within and between loci and with sex. Anal-
yses of the interaction within locus (dominance), between loci (epistasis) 
and with sex were performed using only the corrected SMA procedure 
implemented on an R script. We used residual data from a mixed model 
including sex, generation and pedigree. This approximation is necessary 
given the computational burden of between loci interactions. For domi-
nance and sex, we tested the effects of dominance or of the interaction 
between additive and sex against a model incorporating only an additive 
effect. No procedure for controlling false positives was done and only best 
results with strong -log10(p) are reported here. For the epistasis, a two step 
strategy based on LD between SNPs was used. First, we subdivided the 
genome in 1 cM bins, and tested epistasis between the bins. In each bin, 
the SNP with the highest average LD (r2) with all the other SNPs in the 
bin was chosen as the representative SNP of the bin (tagSNP) and used 
for the interaction testing. Cockerham parameterization of the model was 
used [11] and all four possible interactions (axa, axd, dxa, dxd) were 
tested against a reduced model incorporating only the additive and domi-
nance effect. Then, for each type of interaction, the ones with a -log10(p) 
≥ 3 were selected in order to refine the location of the interacting loci. We 
refined these locations by evaluating interactions between all SNPs con-
tained in the two bins initially detected to have some significant interac-
tions. Further, we ranked the results for each type of interactions according 
to their significance value. Nonetheless, we control potential LD effect by 
removing SNPs in a minimal distance of 10 cM from the top ranked list 
(-log10(p) ≥ 6).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1753-
6561-3-S1-S9-S3.doc]
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