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Abstract
Recent publications have raised concerns about the reliability of microarray technology because of
the lack of reproducibility of differentially expressed genes (DEGs) from highly similar studies
across laboratories and platforms. The rat toxicogenomics study of the MicroArray Quality
Control (MAQC) project empirically revealed that the DEGs selected using a fold change (FC)-
based criterion were more reproducible than those derived solely by statistical significance such as
P-value from a simple t-tests. In this study, we generate a set of simulated microarray datasets to
compare gene selection/ranking rules, including P-value, FC and their combinations, using the
percentage of overlapping genes between DEGs from two similar simulated datasets as the
measure of reproducibility. The results are supportive of the MAQC's conclusion on that DEG lists
are more reproducible across laboratories and platforms when FC-based ranking coupled with a
nonstringent P-value cutoff is used for gene selection compared with selection based on P-value
based ranking method. We conclude that the MAQC recommendation should be considered when
reproducibility is an important study objective.

Background
The utility of DNA microarrays has been demonstrated in
clinical applications and risk/safety assessments [1-6].
With the wide variety of array platforms and analysis
approaches, however, challenges remain in this field. For
example, several publications [7-11] recently raised con-
cerns about the reliability of microarray technology based

on the lack of agreement in differentially expressed genes
(DEGs) obtained from different laboratories and array
platforms for highly similar study designs and experi-
ments. By reanalyzing seven of the largest public DNA
microarrays datasets aimed at cancer prognosis, Michiels
et al. found that the signature genes of the classifiers were
extremely unstable [11]. The MicroArray Quality Control
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(MAQC) project conducted a large study using reference
RNA samples and a toxicogenomics dataset [12,13]
revealed that the DEGs selected using fold change (FC)-
based criterion were more stable in terms of reproducibil-
ity across labs and platforms than those derived solely
from statistical significance measures such as P-value from
simple t-tests. The MAQC study caused some to argue that
the MAQC conclusion could be so broadly generalized. In
response, this study sought to duplicate the finding of
MAQC, except through statistical simulation using postu-
lated datasets. Specifically, we generated a set of simulated
microarray datasets with varying amount of noise, expres-
sion magnitude, and sample size in order to systemati-
cally compare the relationships among gene selection/
ranking rules (i.e., P-value, FC and their combinations)
with respect to reproducibility of DEGs.

Methods
Two simulated groups of samples were generated, a con-
trol group and a treatment group. The control and treat-
ment groups consisted of either 5 or 50 replicates
(samples) with each replicate containing 12,000 genes.
The gene intensities of the samples in the control group
were simulated by Signal + Noise while the corresponding
gene intensities of the treated samples were Signal + FC +
Noise. Both Signal and Noise were distributed normally,
while FC was distributed exponentially. The study used
the set of parameters that are summarized in Table 1. Spe-
cifically, both treated and control groups contain either 50
or 5 simulated replicates with a distributed CV (coefficient
of variation) similar to those observed in the MAQC study
for the reference RNA samples and rat toxicogenomics
dataset. CV values of 2%, 10%, 30%, and 100% were
used, corresponding to low, medium, high, and very high
noise level, respectively. For each CV value, three expres-
sion magnitudes were considered corresponding to mean
FC of 1.5, 0.6 and 0.2; these values are corresponding to
the MAQC's study for the reference RNA samples and rat
toxicogenomics dataset as well as consistent with the
range typically found in clinical microarray experiments,
respectively.

Results and discussions
The study applied 24 simulated conditions (or 24 permu-
tations) corresponding to two sample sizes, each having
four values of CV and three different mean FC values, cor-
responding to Table 1. For each permutation, six gene
selection methods were used to determine DEGs by com-
paring the treated group with the control group. These
gene selection methods were (1) FC: genes are rank
ordered by FC and DEGs determined by a FC cut-off only;
(2–3) FC (P < 0.01) and FC (P < 0.05): genes are rank
ordered first by FC and DEGs are determined by a P-value
cutoff of either 0.01 and 0.05; (4) P: genes are rank
ordered by P-value from the simple t-test and DEGs are
selected using a specified P-value cutoff; and (5–6) P (FC
> 1.4), and P (FC > 2): genes are rank ordered first by P-
value and DEGs are then determined by either a FC = 1.4
or FC = 2 cutoff. Each permutation was repeated twice to
mimic the process of conducting the same experiment in
two different labs or two different platforms. The resulting
DEGs from two simulations were compared to assess
reproducibility across labs or platforms based on the per-
centage of overlapping genes (POG).

Figure 1 compares six gene selection methods applied to
four datasets, each containing a different noise level (i.e.,
CV = 2%, 10%, 30% and 100%), where POG is shown as
a function of the number of genes selected as differentially
expressed between two simulations for the same permuta-
tion (magnitude = 1.5 and sample size = 50). In general,
the FC-based gene selection methods outperformed the P-
based gene selection method in terms of DEG reproduci-
bility measured by POG. Specifically, three FC-based gene
selection methods, i.e. FC, FC (P < 0.01), and FC (P <
0.05) consistently result in the highest POG values,
regardless of CV value. Higher noise consistently results in
lower POG (i.e., DEG reproducibility), as expected. The
POG consistently decreases with increasing CV. For P
value selection methods, higher FC cutoff results in higher
POG. All results are consistent with MAQC observations.

Figure 2 compares six gene selection methods on three
datasets, each having a different magnitude level between

Table 1: Summary of the parameters used in this study.

CV Low Medium High Very High

~2% ~10% ~30% ~100%

Magnitude
(FC)

MAQC main study MAQC Rat toxicogenomics Clinical application

~1.5 ~0.6 ~0.2

Sample Size 5 per group 50 per group
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the treated and control groups (i.e., FC = 1.5, 0.6 and 0.2).
Similar to Figure 1, the FC-based methods resulted in
greater reproducibility compared to the P-based method.
Furthermore, POG increases with increasing differential
expression magnitude for FC selection methods. How-
ever, this trend is not prominent for P value-based selec-
tion methods, where it seems that the trend is equivocal.

Figure 3 compares six gene selection methods on two
datasets, one having sample size of 50 and the other hav-
ing sample size 5. FC-based methods again give higher
POG than P value-based methods, with the larger sample
size resulting in higher POG for either selection approach.

Whereas POG are affected by the degree of noise level,
expression magnitude and sample size of the datasets, the
above results clearly demonstrated that the DEGs become

more reproducible, especially when fewer genes are
selected, if the FC is included as the ranking criterion for
subsequent DEGs identification. It is likely that the dis-
cordance of reported microarray results in literature is in
large part due to the widespread of using P-based
approach to rank genes over the FC-based method. The
results of our another related study demonstrated that the
relationship of the tradeoff between reproducibility and
specificity/sensitivity in the FC (P) approach can be bal-
anced by weighting the FC as a primary consideration in
gene ranking: that is an FC criterion explicitly incorporates
the measured quantity to ensure reproducibility, whereas
a P criterion incorporates control of sensitivity and specif-
icity [14].

The relationship of POGs with the degree of noise level in the simulated datasetsFigure 1
The relationship of POGs with the degree of noise level in the simulated datasets: (A) Low noise (CV = 2%); (B) 
Medium noise (CV = 10%); (C) High noise (CV = 30%); and (D) Very high noise (CV = 100%). The simulated datasets were set 
to the expression magnitude difference between the treated and control groups of 1.5 and the sample size of 50. The x-axis 
represents the number of genes selected as differentially expressed, and the y-axis represents the POG (%) of two gene lists 
for a given number of differentially expressed genes. Each line on the graph represents the overlap of differentially expressed 
gene lists based on one of six different gene ranking/selection methods. The red and blue numbers give the POG (%) for 500 
selected DEGs (red dashed line) from P rank ordering only and FC rank ordering with P < 0.05, respectively.
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Conclusion
Our simulation results show that the choice of gene selec-
tion method significantly affects apparent reproducibility
of DEGs as measured by POG. Reproducibility as meas-
ured by POG between lists substantially increases when
FC is the ranking criterion for identifying DEGs, especially
for shorter gene lists. This observation holds for different
noise levels, expression magnitudes and sample sizes. Our
simulation are consistent with MAQC's conclusion that to
generate more reproducible DEG lists across labs and plat-
forms, the FC ranking with a nonstringent P-value cutoff,
so named the FC (P) approach, should be considered
when reproducibility is a consideration in a microarray
study.

The relationship of POG with the degree of difference in expression magnitude between the treated versus control groupsFigure 2
The relationship of POG with the degree of differ-
ence in expression magnitude between the treated 
versus control groups. (A) Magnitude = 0.6; (B) Magnitude 
= 1.5; and (C) Magnitude = 0.2. The simulated datasets had 
CV = 30% and sample size = 50. The x-axis represents the 
number of genes selected as differentially expressed, and the 
y-axis represents the POG (%) of two gene lists for a given 
number of differentially expressed genes. Each line on the 
graph represents the overlap of differentially expressed gene 
lists based on one of six different gene ranking/selection 
methods. The red and blue numbers give the POG (%) when 
500 genes (red dashed line) are selected as DEGs using P 
rank ordering only and FC rank ordering with P < 0.05, 
respectively.

The relationship of POG with the sample size: (A) 50 sam-ples/group and (B) 5 samples/groupFigure 3
The relationship of POG with the sample size: (A) 50 
samples/group and (B) 5 samples/group. The simulated 
datasets had CV = 30% and magnitude = 50 (see Table 1). 
The x-axis represents the number of genes selected as differ-
entially expressed, and the y-axis represents the POG (%) of 
two gene lists for a given number of differentially expressed 
genes. Each line on the graph represents the overlap of dif-
ferentially expressed gene lists based on one of six different 
gene ranking/selection methods. The red and blue numbers 
give the POG (%) when 500 genes (red dashed line) are 
selected as DEGs using P rank ordering only and FC rank 
ordering with P < 0.05, respectively.
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