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Abstract
Background: The aim of this work was to study the performances of 2 predictive statistical tools
on a data set that was given to all participants of the Eadgene-SABRE Post Analyses Working
Group, namely the Pig data set of Hazard et al. (2008). The data consisted of 3686 gene expressions
measured on 24 animals partitioned in 2 genotypes and 2 treatments. The objective was to find
biomarkers that characterized the genotypes and the treatments in the whole set of genes.

Methods: We first considered the Random Forest approach that enables the selection of
predictive variables. We then compared the classical Partial Least Squares regression (PLS) with a
novel approach called sparse PLS, a variant of PLS that adapts lasso penalization and allows for the
selection of a subset of variables.

Results: All methods performed well on this data set. The sparse PLS outperformed the PLS in
terms of prediction performance and improved the interpretability of the results.

Conclusion: We recommend the use of machine learning methods such as Random Forest and
multivariate methods such as sparse PLS for prediction purposes. Both approaches are well
adapted to transcriptomic data where the number of features is much greater than the number of
individuals.

Background
Often, an important goal of transcriptomic analyses is to
identify differentially expressed genes; the expression level
of each gene is explained by the phenotype in a linear
model setting (either regression or ANOVA for a quantita-
tive or a qualitative phenotype). Another important goal

is to find biomarkers, i.e. genes that have a high predictive
value for the phenotype. One statistical method that can
be considered is discriminant analysis, where the pheno-
type is modelled as a linear combination of a subset of
gene expressions. However, in the case of transcriptomic
data, gene expressions are highly correlated, leading to
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multicollinearity problems in discriminant analysis. Fur-
thermore, the high number of variables limits the use of
this method. To circumvent this problem, one can pre-
select the variables, or use approaches that can deal with a
large number of variables.

In this study, the objective was to assess the behaviour of
2 prediction methods on one data set [1,2], where the
phenotype is a set of factors, genotype or breed (Large
White denoted LW, and Meishan denoted MS), and treat-
ment (control and ACTH, coded c and a). Expression lev-
els were available for 3686 genes on 24 animals. We first
focus on the machine learning approach Random Forest
(RF), and then on the modelling approach sparse Partial
Least Squares (sPLS) to analyse this data set.

Methods
Random forests
Random forests [2] is a classification algorithm that takes
advantage of the unstable property of Classification and
Regression Trees (CART) classifiers [3] and their lack of
accuracy by aggregating them. It combines two sources of
randomness that improve the prediction accuracy: bag-
ging (bootstrap aggregating) and random feature selec-
tion to construct each CART. This results in a low
correlation of the individual trees as well as low bias and
low variance. The individual trees Tk are constructed as fol-
lows:

- N bootstrap samples (B1,..., BN) are drawn from the orig-
inal data.

- Each sample Bk (k = 1,..., N) is used as a training set to
construct an unpruned tree Tk. Let p be the input variables
of the tree. For each node of Tk, m variables are randomly
selected (m<<p) to determine the decision at the node,
where m is constant during the forest growing. Then the
best split among these m predictors is chosen to split the
node.

The predictions of the N trees are then aggregated to pre-
dict new data by majority vote for classification or by aver-
age for regression. Random forest avoids the need to
perform a separate cross validation test to estimate the
prediction error of the forest when performing a classifica-
tion or a regression. While the forest is constructed, it gen-
erates an internal estimation of the generalisation error as
follows:

- While constructing each tree Tk, about one-third of the
cases are left out of the bootstrap sample and are not used
in its construction. These data are called "Out-of-bag" or
OOB data and are used as an "internal" test set for each
tree that is grown.

- The OOB predictions are then aggregated and the error
rate, called "OOB error estimate" is computed for the
whole forest and should lead to an accurate and unbiased
generalisation error [2].

The Mean Decrease Accuracy measure was used in this
study as a feature selection criterion, where the OOB data
are used to obtain estimates of variable importance by
evaluating their contribution to the prediction accuracy.
The values of each variable in the OOB cases are randomly
permuted and are run along the tree. The proportion of
cases in the correct classes with permuted OOB data is
then subtracted from the proportion of cases in the correct
classes where OOB data have not been permuted. The
Mean Decrease Accuracy averages the difference between
these two accuracies over all trees in the forest and nor-
malizes it by the standard error.

PLS and Sparse PLS
Let Y be the n × q matrix of phenotypes with the 4 columns
indicating each combination (LWa, LWc, MSa, MSc) for
the 24 animals, and let X be the n × p matrix of the 3686
gene expressions measured on the 24 animals. Partial
Least Squares regression (PLS) was introduced by Wold
[4], first with the NIPALS algorithm and then followed by
numerous variants. The PLS is based on the simultaneous
decomposition of the data sets X and Y into loading vec-
tors and associated latent variables. The main idea is to
perform successive regressions with projections onto
latent structures to highlight hidden or latent underlying
biological effects. As in Principal Component Analysis
(PCA), the PLS components (latent variables) are linear
combinations of the initial variables. However, the coeffi-
cients that define these components are not linear, as they
are solved via successive local regressions on the latent
variables. Furthermore, PLS goes beyond a simple regres-
sion problem, since X and Y are simultaneously modelled
by successive decompositions. The objective function
involves maximizing the covariance between each linear
combination of the variables from both groups:

The loading vectors are the p- and q- dimensional vectors
uh and vh for each PLS dimension h and are respectively
associated to the X and Y data sets. The associated latent
variables are defined as h = Xuh and h = Yvh. As in PCA,
the loading vectors uh and vh are directly interpretable, as
they indicate the importance of the variables from both
data sets in relation with each other. The latent variables
h and h, that are n-dimensional vectors contain the
information regarding the similarities or dissimilarities
between the individuals or samples [5]. PLS is an iterative
method that is suitable for high dimensional data sets and
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has a valuable stability property. However, this interesting
approach does not allow feature selection, which renders
the results difficult to interpret in the n<<p problem. Lê
Cao et al. [6] proposed a sparse version of the PLS, that
combines variable selection and modelling in a one-step
procedure for such problems. The sparse PLS (noted sPLS)
is based on Lasso regression [7] that penalizes the loading
vectors using Singular Value Decomposition to solve the
PLS [8].

Two criteria were used to select the dimension size H and
the number of predictive genes to select on each dimen-
sion of sPLS: the Root Mean Squared Error Prediction
(RMSEP), and the Qh2 that measures the marginal contri-
bution of each latent variable to the predictive power of
the PLS model. Briefly, 1-Qh2 is the ratio of the average
PRediction Error Sum of Squares to the average of the
Residual Sum of Squares, over the variables (refer to [9]
for more details).

The methods used to analyse this data set are imple-
mented in the R   software (RandomForest R package [10]
, the R package "integrOmics" for sPLS  is available at
www.math.univ-toulouse.fr/biostat).    

Results
Random Forest
Random Forest (RF) does not require fine-tuning of its
parameters. In this study, however, random forest classifi-
cations with 10000 trees were performed in order to
obtain stable results. When applied to the whole data set
(3686 genes), RF gave a reasonably high prediction
power, with an OOB estimate of error rate equal to 12.5%.
After a pre-selection of differentially expressed genes (662
genes with a FDR < 20%), the prediction was perfect (with
0% of the OOB estimate of error rate).

Comparing the significant level of genes (-log10 of the p-
value of the Fisher test in the differential analysis per-
formed in [1]) with the importance given by RF (Mean
Decrease Accuracy measure), we obtained a relatively high
correlation between both measures (Figure 1). However,
some of the most significant genes were not the most
important (and vice-versa). Horizontal and vertical lines
in Figure 1 were drawn to highlight the differences in the
selections performed with the Fisher test or the Random
Forest. Generally, this high correlation between the results
of these two approaches was not encountered in other
data sets [11], and may be explained here by the high pro-
portion of differential genes with additive effects on gen-
otype and treatment.

Hierarchical clustering is widely used as a statistical tool
for microarray data to look for similarities between genes
and samples in an unsupervised way. Hierarchical cluster-

ing using the Ward method and Euclidian distance [12]
were thus used to evaluate the classification performances
of the gene selection. The 50 most important genes were
extracted to perform a heatmap (Figure 2). They allowed
for a perfect classification of treated vs. control groups,
and in each group the 2 genotypes were also clearly sepa-
rated. Several clusters of genes appeared, e.g. a cluster of
genes up regulated in treated animals (bottom), another
in LW animals (2nd cluster from bottom).

PLS and sPLS
Recall that Y is the phenotype matrix of the 4 indicators
(LWa, LWc, MSa, MSc) for each animal. The number of
dimensions H to be retained was estimated with the Qh2

criterion, for which a value below the threshold 0.0975
indicates a significant contribution for the prediction pur-
pose [4,9]. The Qh2 values calculated for each dimension
of the PLS and the sPLS showed that 2 dimensions were
enough to capture the whole information for both PLS or
sPLS. An equivalent coding for Y is the 2 column matrix of
genotype and treatment factors that will be considered in
the following.

The number of dimensions being fixed to 2, the optimal
number of genes selected on each dimension (equal
number of genes on both dimensions for the sake of sim-

Comparison of significance level (-log10 of the p-value in the differential analysis) with the importance measure of Random ForestFigure 1
Comparison of significance level (-log10 of the p-
value in the differential analysis) with the importance 
measure of Random Forest. The genes above the hori-
zontal line are differentially expressed genes (t test) whereas 
the genes on the right hand side of the vertical line are 
declared as most important and highly predictive by Random 
forest.
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plicity), was determined with the RMSEP for both sPLS
and PLS. The optimal result, i.e. the lowest RMSEP
obtained was 10 genes on each dimension. In this case,
the sPLS gave better predictions than PLS (not shown).

Figure 3 displays the representation of the 24 individuals
for the 2 dimensions of the 10+10 sPLS analysis and
clearly shows a perfect separation between the 4 classes.
The first axis separates the 2 genotypes and the second axis
the treatment.

Figure 4 allows one to understand better the correlations
between the selected genes in relation with the 2 latent

components. In this graph, the coordinates of each
selected gene are obtained by computing the correlation
between the latent variables vectors and the whole data set
X. These genes are then projected onto correlation circles
where highly correlated genes cluster together and are
closed to the larger circle. Interestingly, we observed that
the 10 genes selected in dimension 1 were not the same as
the 10 genes selected in dimension 2 (no overlap between
the two gene lists). This may infer that each gene lists is
related to a different effect in the data. Indeed, the inter-
pretation of the axes deduced from Figure 3 can be com-
bined to Figure 4 and we found that the genes on the right
hand side were all significantly up regulated in Meishan
breed (class MS). A closer look at the other sets of genes
showed a good coherence between the differential analy-
sis (t test) and the sPLS.

Figure 4 clearly illustrates the superiority of sPLS on PLS
in terms of interpretability, as the PLS does not allow for
variable selection.

The list of significantly expressed genes (t test) did not
exactly match with the list of sPLS predictive genes. This
shows that the information captured by the 2 approaches
may bring complementary as well as relevant results.

Graphical representation of genes selected with sPLS and their correlationFigure 4
Graphical representation of genes selected with sPLS 
and their correlation. Genes clustered together indicate a 
high correlation between them. This figure can be combined 
with the interpretation of Figure 3: the genes in dark colour 
are predictive for the genotype effect (first axis) and the 
genes in red are linked with the treatment (second axis).

Heat map displays of the hierarchical clustering resultsFigure 2
Heat map displays of the hierarchical clustering 
results. The light (dark) colour represents over-expressed 
(under-expressed) genes. The clusterings were performed 
with the Ward method and Euclidian distance with the 50 
genes selected with Random Forest. Genes are displayed in 
lines and individuals in columns.

Graphical representation of individuals with the two latent variables associated to the X data setFigure 3
Graphical representation of individuals with the two 
latent variables associated to the X data set. The first 
axis (first latent variable) separates the two genotypes, while 
the second opposes the treatments.
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Discussion
Due to the clear structuring of the data, it is difficult to
compare the performances of the statistical prediction
approaches. A thorough biological interpretation of the
results is now needed to validate the use of these methods.

In the case where q > 1 in the Y matrix, few other
approaches have been developed for variable selection
and integration of two-block data sets based on elastic net
procedure [13] or shrinkage methods [14]. However,
most of them focus on a canonical analysis, i.e. a symmet-
ric relationship between the data sets, which is not the
case in this study. The reader can refer to [15] (Canonical
Correlation Analysis with Elastic Net) or [16] (Co-inertia
analysis from [17]) for biological data sets.

In the case where q = 1, as performed with RF when we
combined the phenotypes in one class vector, we find our-
selves in a typical multiclass problem. Several approaches
have been developed for feature selection, among them
the reader can refer to Recursive Feature Elimination [18],
Nearest-Shrunken Centroid [19] or Optimal Feature
Weighting [20], that can deal with more than 2 classes.

Conclusion
The differential analysis in [1], and the 2 predictive
approaches presented here gave coherent, similar but
complementary insights. On this data set however, expres-
sion patterns were so different in the 4 classes that the
conclusions of the comparisons between the above statis-
tical tools are not to be generalised.

In microarray data, the statistical criteria are often limited
by the small number of samples. Therefore, it is strongly
recommended to combine statistical assessments with a
sound biological interpretation of the data, as was shown
for example in [21]. They showed the importance of the
interpretation of the results and found interesting com-
plementarities between predictive approaches in several
data sets, in terms of biological processes. Therefore, we
also recommend the use of various predictive statistical
tools when searching for biomarkers.
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