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Abstract

Although identification of cryptic population stratification is necessary for case/control association
analyses, it is also vital for linkage analyses and family-based association tests when founder
genotypes are missing. However, including related individuals in an analysis such as EIGENSTRAT
can result in bias; using only founders or one individual per pedigree results in loss of data and
inaccurate estimates of stratification. We examine a generalization of principal-component analyses
to allow for the inclusion of related individuals by down-weighting the significance of individual

comparisons.

Background

At the heart of all genetic case/control association
analyses lies estimation of allele frequencies. For linkage
analyses and pedigree-based association analyses, allele
frequency estimates are used when a parental genotype is
missing. Because cryptic population stratification results
in misestimates of allele frequency, this can lead to false
positives for any type of analysis with missing founder
genotypes [1,2]. Current methods for identifying and
controlling population stratification rely on unrelated
individuals. When they are applied to pedigree data, only
the founders are analyzed. This suggests that the situation
in which detection of population stratification is most
needed is the least tractable with current methods.

Several methods for detecting population stratification
exist. Two of the most common methods are imple-
mented in STRUCTURE and EIGENSTRAT [3,4]. The
program STRUCTURE uses a Markov-chain Monte Carlo
(MCMC) method to identify natural population clusters
based on multilocus genotypes. It provides probability
of membership for each sample that provides a very
natural interpretation. However, it is too computation-
ally intensive to be used on genome-wide association
study (GWAS) data involving hundreds of thousands or
millions of markers [4]. To handle this volume of data, a
more computationally simple method is required. The
program EIGENSTRAT uses a very fast linear algorithm
to identify population structure. In particular, it
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performs a principal-component analysis (PCA) on a
matrix X; an M x N matrix (where M is the number of
markers and N is the number of individuals). An
eigenvalue decomposition is then performed on the
N x N correlation matrix and population membership is
inferred from the eigenvectors. One determines how
many natural ethnicities are present by examining the
sizes of the eigenvalues using a graphical scree analysis
or a numeric approach (such as the recently developed
“acceleration factor” [5]).

However, the nature of the eigenvalue decomposition
introduces problems when individuals are related.
Because biologically related individuals are already
genetically correlated, this can bias the decomposition,
especially in the presence of a large number of related
individuals (such as in large pedigrees). Using only
unrelated individuals limits the analysis to either the
founders or a sampling of unrelated individuals.
Although the founders provide all of the genetic
variation present in the subsequent generations and
therefore represent all available information, using
randomly sampled unrelated individuals results in a
loss of information.

Methods

To allow for the analysis of related individuals, we will
apply a recently developed method of linear dimension-
ality reduction [6]. This method can be considered a
generalization of PCA, or “weighted” PCA. In particular,
consider a re-formulation of PCA as linear projection
from a higher dimensional to a lower dimension space
in which we maximize the sum of projected pairwise
squared distances:
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If we instead consider a system of weights w, we can
instead maximize
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providing a weighted version of PCA. In particular, we
define the Laplacian to be an N x N matrix such that
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One then performs an eigenvalue decomposition on the
matrix
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xixT.

The use of the Laplacian causes an important change in
the process. The PCA is normally computed on the
matrix

xTx,

an N x N symmetric matrix of the pairwise genetic
covariance between subjects. However, since the Lapla-
cian is an N x N matrix placed within the covariance
calculation, we then produce an M x M symmetric matrix
of the weighted pairwise covariance between markers.
With dense SNP genotyping, we typically see more
markers than individuals by several orders of magnitude,
and this computation would be nearly intractable.
However, since the Laplacian matrix is positive semi-
definite, we can compute a Cholesky decomposition
such that

u'u=L.
And thus,
xix' = xu'ux® = wx") wx".
Let
Yy =ux"’.
We then see that
XX =vy'y.

But then we can compute the eigenvalue decomposition
of

vy =uxxu’.

This is much more manageable. Further, the eigenvalues
for these two are the same and the eigenvectors of the
original formulation are simply the product of Y' and
the second set of eigenvectors (followed by normal-
ization) [7].

For our analyses, we use a weight based on work by
McPeek and colleagues [8]. In particular, they demon-
strate the use of the kinship matrix to derive the best
linear unbiased estimate (BLUE) of allele frequencies in
samples of related individuals.

For N individuals, let K be the N x N kinship matrix and
let 1 denote a column vector of length N of 1 values.
Then the vector

w=0"kT) Tk
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provides the best linear weights to compute allele
frequencies for related individuals. In a fully typed
pedigree, each founder is given a weight “1” and all other
individuals are given weight “0.” In any pedigree with a
single typed individual, that individual is given weight
“1.” In the simple case of a nuclear pedigree with S
children without genotyped parents, each child is given
weight 2/(S+1). Note that as the number of typed
children increase, the sum of the weights tends toward
2 - precisely the number of founders of the pedigree. This
generalizes to any sized pedigree; namely, the total of the
weights cannot be larger than the number of founders,
since the founders were the only source of genetic
material in the pedigree.

For pairwise weights between two individuals, we use the
product of the individual weights. In particular, we
derive L from the weight matrix

wlw.

We test this method compared with the standard
EIGENSTRAT method using the Framingham Heart
Study data. After cleaning, the Framingham Heart
Study data consists of 1180 pedigrees, including 418
singletons. The remaining 762 pedigrees have an average
of 8.3 genotyped individuals, including 9 pedigrees with
more than 50 genotyped individuals. The best standard
of comparison would be an analysis using all founder
genotypes, but because not all founder genotypes are
available, we apply an algorithm to identify the maximal
set of unrelated individuals. We consider the resulting
population membership as the “gold standard.” We also
consider the set of singletons and one individual chosen
at random from each pedigree. Finally, we consider the
full sample with all related individuals using the
standard EIGENSTRAT method and our novel method.
We then assess to what degree including related
individuals influences the standard method and how
well the novel method reproduces the “gold standard.”
We also examine the total weight of all the genotypes as
a measure of how much information is used.

Results

We used the full 50 k marker set but kept only autosomal
SNPs with a minor allele frequency greater than 0.05 and
a genotyping rate greater than 99%, for a total of 31,068
SNPs. We dropped individuals with more than 5%
missing genotypes, for a total of 6757 individuals.

We considered five data sets for PCA: MaxUnrel,
maximum number of unrelateds, our gold standard;
Singletons, individuals without genotyped relatives; One
per, one individual per pedigree chosen at random; Full,
all individuals without weighting; and Weighted, all
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individuals with weighted PCA as described above. Table
1 reports number of individuals and scaled values of the
first three principal components (scaled so PC1 = 1.0).
Note that for the two smallest samples, there is evidence
of two separate axes of stratification, but this disappears
for the larger samples.

Figure 1 shows a plot of the first PC for MaxUnrel
compared to the other four samples after scaling to mean
zero and SD 1. Only individuals used directly are
plotted. Note that the smallest sample (Singletons)
shows a clear bias compared with MaxUnrel. We also
see handfuls of outliers for all samples, but the weighted
method stays closest to MaxUnrel.

Figure 2 shows the mean number of individuals used for
each analysis compared with number of genotyped
individuals. The novel weighting method shows a clear
advantage, especially when pedigrees are very large. This
is still substantially less than the “Possible” (the total
number of founders, typed or untyped), but much better

Table I: Number of effective individuals for five samples and
scaled principal components

Data set® Individuals PCI PC2 PC3

MaxUnrel 2014 1.0000° 0.5113 0.405
Singletons 418 1.0000 0.7045 0.4808
OnePer 1180 1.0000 0.7074 0.4475
Full 6757 1.0000 0.4002 0.3717
Weighted 2898.7 1.0000 0.4147 0.3652

?MaxUnrel, maximum number of unrelateds; Singletons, individuals
without genotyped relatives; One per, one individual per pedigree
chosen at random; Full, all individuals without weighting; and Weighted,
all individuals with weighted PCA.

®Bold components were found significant by the acceleration method.
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PCI for multiple samples. Consistency of normalized

PCI for subsets compared with maximal set of unrelateds.
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Figure 2

Samples used. Mean number of individuals used for
number of typed individuals. Possible indicates the mean
number of founders (typed or untyped).

than using only the typed founders or finding a maximal
set of unrelated individuals.

Discussion

We propose the use of weighted PCA implemented
through the presence of a Laplacian matrix to allow
detection of stratification in related individuals. Our
results indicate the methodology developed by McPeek
and colleagues to compute allele frequencies in related
individuals can be extended to detection of ethnic
stratification. This method uses all available genotypic
data, with an effective sample size that approaches the
number of founders in the pedigrees. This exceeds other
methods of selecting unrelated individuals. Furthermore,
we see evidence of bias and outliers when using small
subsets of individuals. Using too few individuals for
stratification may also artificially inflate evidence of
stratification. It does appear that the presence of related
individuals in a very large sample seems to have little
effect on the stratification analysis, but this might not
hold in other circumstances. Furthermore, this method
has only been tested on a European American sample
with a single principal component (probably identifying
a continuous population spread such as northern to
southern European). Because the Framingham data does
not have any obvious discrete clusters, this method still
must be tested in a more diverse population.

List of abbreviations used
GWAS: Genome-wide association study; MCMC: Markov-
chain Monte Carlo; PCA: Principal component analysis.
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