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Abstract

The Framingham Heart Study is a well known longitudinal cohort study. In recent years, the
community-based Framingham Heart Study has embarked on genome-wide association studies. In
this paper, we present a Framingham Heart Study genome-wide analysis for fasting triglycerides
trait in the Genetic Analysis Workshop16 Problem 2 using multivariate adaptive splines for the
analysis of longitudinal data (MASAL). With MASAL, we are able to perform analysis of genome-
wide data with longitudinal phenotypes and covariates, making it possible to identify genes, gene-
gene, and gene-environment (including time) interactions associated with the trait of interest. We
conducted a permutation test to assess the associations between MASAL selected markers and
triglycerides trait and report significant gene-gene and gene-environment interaction effects on the
trait of interest.

Background
Current advances in genotyping technologies, such as the
Affymetrix 500 k GeneChip, make genome-wide associa-
tion studies (GWAS) feasible for identifying common
variants that underlie complex traits. Some of the recent
genetic variants discovered by GWAS include age-related
macular degeneration (AMD) [1,2], inflammatory bowel
disease [3], and electrocardio-graphic QT interval [4].
Data from the 500 k genome-wide scan of the Framing-
ham Heart Study (FHS) is available for use in the Genetic
Analysis Workshop (GAW) 16. The FHS, a community-

based cohort study initiated in 1948, aims to identify
cardiovascular disease risk factors. FHS provides a
collection of data from three generation families who
had been followed up every 2 or 4 years over time. This
longitudinal feature poses methodological challenges.
Applying an efficient approach to analyzing the FHS
longitudinal data may help in discovering new genetic
variants in GWAS.

Previously, several approaches [5,6] were proposed to
analyze the FHS 100 k data set; however, most of these
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did not directly deal with longitudinal data. These
methods require the longitudinal measures to be
summarized into one time-point trait by taking the
average of several measures or by using the family-based
association test (FBAT) principal-components method
[6]. It is inevitable that there may be some loss of
information by using the summary trait values [7].
Furthermore, when applying the adjustment of FBAT-
principal-components method in GWAS, it is difficult to
include environment factors such as sex and age.

In our study, we use the multivariate adaptive splines for
analysis of longitudinal data (MASAL) presented by
Zhang [8] to analyze the FHS longitudinal data. MASAL
is a nonparametric regression approach that was devel-
oped specifically to handle longitudinal data. MASAL
not only accommodates time-varying covariates, but also
allows interactions between gene and environmental
factors and between time and covariates [9]. Here we
demonstrate and apply MASAL to identify genes, gene-
gene, and gene-environment interactions in relation to
the trait triglyceride (TG) level in GWAS using FHS data
in GAW16 Problem 2.

Methods
MASAL
We present a brief review of MASAL and refer to Zhang
[8,10] for the details. Let yij, tij, and xk, ij denote the
response variable, time-dependent covariate, and kth

non-time-dependent-covariates (including both genetic
and environmental covariates) for the ith subject at the jth

exam, where j = 1, ..., T, i = 1, ..., n, k = 1, ..., p; n is the
number of study subjects and Ti is the number of exams
for the ith subject. In MASAL, we consider the following
nonparametric model:

y f x x tij ij p ij ij ij= +( , , , ), ,1 … ε , (1)

where f is an unknown smooth function and εij is the
error term.

Based on a set of observations, MASAL selects a model
using a forward step from the following class of
functions:
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where bm is the regression coefficient and Bm(x) is a
special basis function of the p + 1 covariates x = (x1, ..., xp
+1) (m = 1, ..., M), and M is the number of terms.
Specifically, Bm(x) is either one of (xk - τ)

+ and xk or their
product (k = 1, ..., p + 1), and a+ = max(a,0) for any
number a and τ is called a knot.

In the forward step, terms are added to minimize the
(weighted) sum of squared residuals:

WLS i ii
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and ŷ i is the predicted value of yi, and Wi is the within-

subject covariance matrix for ( , , )’ε εi iTi1 … , i = 1, ..., n.

After the forward step, all knots are found and each
corresponding basis function will be treated as if
it is a given predictor. In the backward step, based
on generalized cross-validation (GCV), we delete one
least significant term from the large model at a time. The
final model we select is the one that yields the smallest

GCV WLS l Tl ii

n= − + =∑/[ ( ) / ]1 1
1

2λ , where WLSl is the

WLS of a reduced model with l terms and l (usually
l = 4 [10,11]) is the penalizing parameter for model
complexity.

GWA analyses with MASAL
In GWAS, we use MASAL to establish the relationship
between a trait of interest and genomic markers as well
as other non-genetic covariates. MASAL starts with a
model that contains only the intercept a a, and it
grows the model by adding terms that minimize the
WLS in the forward step, and then it selects a final
model by deleting one least significant term at a time
in the backward step. In general, the final MASAL
model is
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where B m km
( )( ) ( , , )1 1x  = … represents terms containing any

genetic component (i.e., single-nucleotide polymorphism
(SNP), SNP-SNP interaction, or SNP-covariate interaction),

B m k Mm
( )( ) ( , , )2 1x  = + … refers to non-genetic covariate

terms, and ˆ ( , , )βm m k = 1… , ˆ ( , , )γ m m k M= + 1…
is the estimate of the corresponding regression coefficients.

To access associations between the selected SNPs and the
trait of interest, we define a Wald statistic to test whether
b = 0, where b = (b1, ..., bk)’. The Wald statistic can be
written as

W = ∑ −ˆ ’( ˆ ) ˆ ,ββ ββ1 (4)

where ˆ ( ˆ , , ˆ )’ββ = β β1 … k , and ∑̂ is the estimated covar-
iance matrix of β̂β . We use a permutation procedure to
establish the null distribution of W The permutation test
is done by randomly assigning the phenotype while
keeping the set of genotypes intact for each individual
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and then performing the GWA analysis using MASAL. It
is noteworthy that non-genetic covariates go together
with the phenotype.

Study design
We perform GWA analyses of TG trait with MASAL. We
consider the genotype at every SNP as a covariate in the
model in addition to sex and age variables. MASAL has
the option of setting the maximum order of interactions
in the model. We set it to three in our analyses because it
is difficult to interpret interactions higher than the third
order. We first use MASAL to perform GWA analyses in
the Offspring Cohort, in which the repeated TG values
and the familial correlations are properly accounted for
in the analysis. Next, we perform GWA analyses with
MASAL in the Original Cohort in which the subjects are
considered to be independent, whereas the longitudinal
trait values are considered to be correlated. Then, we
examine significant SNPs, SNP-SNP, and SNP-covariate
interactions in the two generation data sets analyzed and
compare the level of concordance of significant associa-
tions in the two samples.

In the Offspring Cohort, some pedigrees have more than
100 subjects, which cannot be treated as independent
individuals. These families with repeated traits induce a
large covariance matrix in MASAL and thus markedly
limit its efficiency. Therefore, in the analyses of Offspring
Cohort, we split all pedigrees into sibship units accord-
ing to the information from the Original Cohort. We
obtained 1,767 sibship units, for which each sibship unit
consists of one set of siblings and their spouses from
each nuclear family. All subjects included in our study
have all TG trait values (Exams 1, 3, 5, and 7) and
genotypes. In the Original Cohort, we used 146
individuals who have all TG trait values (Exams 7 and
11) and genotypes. All of these subjects were genotyped
for 488,146 SNPs.

Results and discussion
We applied MASAL to analyze the FHS 500 k SNP data
set (GAW 16 Problem 2). Before the analysis, TG level
values were log-transformed to approximate a normal
distribution, although there is no such limitation when
using MASAL. Furthermore, in order to minimize false-
positive associations due to rarer SNPs and genotyping
artifact, we limited our analyses to SNPs with minor
allele frequency ≥ 10% and the p-value for testing Hardy-
Weinberg equilibrium <0.001. Thus, there were a total of
294,434 SNPs remaining in our analysis.

In the analyses of Offspring Cohort, the fitted model
given by MASAL is
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where t is the age of exam, s is the indicator for sex, and
g rs

c
#

( ) is the genotype of the SNP rs number in the cth

chromosome. The value of corresponding Wald statistic
is 325.73. Similarly, for the analyses of original cohort,
the fitted model given by MASAL is
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and the value of the corresponding Wald statistic is
359.575.

We attempted to establish the null distributions of the
two Wald statistics by using a permutation procedure
and calculating the p-values of the two tests. However,
the permutation study based on the entire genome is
extremely time-consuming. Thus, instead of using the
entire genome, we randomly selected a series of subsets
of SNPs in 500 increments (e.g., 500, 1000, 1500, ...,
10,000 SNPs) of 500 k SNPs to characterize the pattern
of the empirical distribution of W. Based on each subset,
we used the above permutation procedure to establish
the empirical distribution of Wand calculated 93%,
95%, 97%, and 99% quantiles. In Figure 1, we illustrate
the trends of the four quantiles showing the increase in
the number of selected SNPs for the Offspring Cohort.
The trends of these quantiles for the Original Cohort are
similar, so we omitted them in Figure 1 due to the
limited space. These results indicate a convergence when
the number of selected SNPs is more than 7,000. As a
result, we established the null distributions of W based
on 10,000 randomly selected SNPs.

The adjusted p-value of the Offspring Cohort based
association test is less than 0.001, which suggests strong
associations between the SNPs selected by the final
model and TG trait. In contrast, the adjusted p-value of
the Original Cohort based association test is 0.056,
which indicates marginally significant associations
between the selected SNPs and TG trait. Our results
confirm that MASAL can properly take account of the
familial correlations in the GWA analysis. MASAL
identified 13 significant SNPs for the Offspring Cohort
and 6 SNPs for the Original Cohort. Table 1 lists the
significant SNPs selected by MASAL, their chromosomal
positions, and the nearest gene(s). Although significant
associations identified in the two samples do not
overlap, the two fitted models exhibit SNP-SNP and
SNP-environment interactions. It is not entirely
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surprising that there is no overlap among the significant
SNPs between the two cohorts because for example, the
characteristics such as age in the two cohorts are

different. It is known that there is a steady increase of
TG levels with age [12]. Furthermore, the two MASAL
models include the age or SNP-age interaction terms,
confirming the age effect. Kooner et al. [12] reported an
association between MLXIPL on chromosome 7 and TG;
and Kathiresan et al. [13] found five loci on chromo-
somes 1, 7 (TBL2 and MLXIPL) 8, and 19 to be
associated with TG. Our models do not include SNPs
in those regions. Further investigation is warranted to
confirm our findings. Although MASAL is a unique
approach to accommodating correlated phenotypes in
genetic studies, its potential has not been fully explored.
It is beyond the scope of this short article to compare
MASAL with other methods, but it is a highly worthy
effort to thorough study the utility of MASAL for
longitudinal genetic data.

Conclusion
In this report, we proposed a testing procedure to
perform GWAS for longitudinal data, using a nonpara-
metric regression method (MASAL) presented by Zhang
[8]. In contrast to other GWA methods, our testing

Figure 1
The trends of the quantiles (93%, 95%, 97%, and 99%) with the increase of the number of selected SNPs based
on the Offspring Cohort. The vertical axis represents the value of the quantile and the horizontal axis represents the
number of selected SNPs in each permutation study.

Table 1: Significant SNPs selected by MASAL

Data set SNP Locus Nearest gene(s)

Offspring Cohort rs4367528 8q12 RLBP1L1
rs16860145 3q13.2 CD200R2
rs4074863 10q26 FLJ46300, TCERG1L
rs9828013 3p25 WNT7A
rs41442345 4q23 BANK1
rs11150610 16p11.2 ITGAM
rs5015152 3q26.3 NLGN1
rs17117113 5q33 KIF4B
rs1361536 9q21 KRT18P24, CHCHD9
rs17630545 8q23 CSMD3
rs7204454 16q23 CDH13
rs1321130 1q42 FAM89A, FLJ30430
rs2514930 11q21 NAALAD2

Original Cohort rs6835031 4q22 TIGD2
rs4984982 16p13.3 LMF1
rs16995794 20q13.2 RPSAP1
rs17783132 14q24 BATF
rs11688196 2p23 TRNAL-AAG
rs9643584 8q13 CPA6
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procedure has two novel features. First, it can handle
longitudinal data without combining longitudinal mea-
sures into a one-time-point measure in GWAS. Second, it
can accommodate gene-gene, gene-environment, and
time-covariate interactions in GWAS. Using MASAL, we
analyzed the FHS 500 k genotype data (GAW 16
Problem 2) using TG as the trait of interest and found
some significant gene-gene and gene-environment inter-
action effects on TG trait. These results indicated that
MASAL is useful for exploring gene-gene and gene-
environment interactions in the GWAS of longitudinal
data.

We used a permutation procedure to establish the null
distribution of the Wald statistic and then estimated the
significance level. However, the computation time was
lengthy, especially for the large pedigree and large
number of exams of each subject. Theoretical studies
exploring the asymptotic distribution of the involved
statistic would be useful.
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