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Abstract

Due to the high-dimensionality of single-nucleotide polymorphism (SNP) data, region-based
methods are an attractive approach to the identification of genetic variation associated with a
certain phenotype. A common approach to defining regions is to identify the most significant SNPs
from a single-SNP association analysis, and then use a gene database to obtain a list of genes
proximal to the identified SNPs. Alternatively, regions may be defined statistically, via a scan
statistic. After categorizing SNPs as significant or not (based on the single-SNP association
p-values), a scan statistic is useful to identify regions that contain more significant SNPs than
expected by chance. Important features of this method are that regions are defined statistically, so
that there is no dependence on a gene database, and both gene and inter-gene regions can be
detected. In the analysis of blood-lipid phenotypes from the Framingham Heart Study (FHS), we
compared statistically defined regions with those formed from the top single SNP tests. Although
we missed a number of single SNPs, we also identified many additional regions not found as SNP-
database regions and avoided issues related to region definition. In addition, analyses of candidate
genes for high-density lipoprotein, low-density lipoprotein, and triglyceride levels suggested that
associations detected with region-based statistics are also found using the scan statistic approach.

Introduction nucleotide polymorphism (SNP) data [1]. On one
Definition of an appropriate unit of gene function has  hand, the use of SNPs selected to capture variation
been identified as a fundamental issue in genetic  across the whole genome may lend itself to treating a
association analysis using high-dimensional single-  single SNP as the unit of analysis for false-positive error
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control. On the other hand, allocating SNPs into regions
and treating the region as the unit of analysis can
substantially reduce the dimensionality problem at the
genome level, and is natural when the region corre-
sponds to a candidate gene. Neale and Sham put forth an
eloquent argument for such a gene-based approach [2].
Given that a set of SNPs deemed to be relevant to a
particular candidate region can be identified, the issue of
how to evaluate genetic association for the candidate
gene/region remains. Application of test statistics for
multiple SNP markers within a chromosomal region
may help address the problem of multiple testing by
increasing the power to detect associations and/or
reducing the number of tests conducted.

Scan statistics based on single-SNP tests have been
proposed to identify genomic regions associated with
disease [3,4], whereas others consider a class of test
statistics with small degrees of freedom (df) that
combine information across a set of SNP markers within
an identified region [5]. A multi-locus regression-based
test statistic that simultaneously tests for main effects of
all the SNP loci within a region, ignoring haplotype
phase, can be more powerful than haplotype analysis [6]
because it allows for association across multiple markers
but does not “spend” df on rare haplotypes. At the other
extreme, the results of multiple single df tests of SNPs
within a candidate region require adjustment for multi-
ple testing. A number of authors compared various test
statistics, mainly in the case-control setting, finding that
relative performance depends on the density and the
correlation structure of the SNPs within a region,
the selection criteria and the number of SNP markers,
the placement and the number of liability/causal SNPs
within a region, as well as on allele frequencies and the
presence of allelic heterogeneity.

In this contribution, we apply two region-based
approaches to a genome-wide association study (GWAS)
analysis of blood lipid measures taken in members of
Offspring Cohort and Generation 3 Cohort of the
Framingham Heart Study (FHS). Initially, we tested each
of the 550 k SNPs from the Affymetrix array datasets, one at
a time. In an alternate approach, we applied scan statistics
based on the single-SNP p-values to identify and test
genomic regions simultaneously. Taking a more conven-
tional approach, we also used external information from
the UCSC gene database [7] to define gene and inter-gene
regions corresponding to single SNPs with small p-values.
Within the defined genomic regions, we then applied
region-based test statistics using multiple linear regressions
of sets of SNPs. We compare the two analytic strategies in
GWAS with respect to the SNPs and the regions detected,
and also compare the association test results in a set of
regions defined by candidate lipid genes.

http://www.biomedcentral.com/1753-6561/3/S7/S127

Methods

FHS data

We analyzed the Genetic Analysis Workshop 16 FHS
Offspring Cohort (n = 2584) and Generation 3 Cohort
(n = 3811) using the SNP genotypes from GeneChip
Human Mapping 500 k Array and 50 k Human Gene
Focused Panel and the blood lipid phenotypes. All
family members within these cohorts who had been
genotyped and phenotyped were included in the
analysis.

Definition of phenotypes

Fasting total cholesterol, high-density lipoprotein (HDL)
cholesterol and triglycerides (TG) were measured at up
to four exams for the Offspring Cohort and at one exam
for the Generation 3 Cohort. Low-density lipoprotein
(LDL) cholesterol was calculated using the Friedewald
formula (Total = HDL + LDL + TG/5) for each
measurement. For the patients on lipid lowering
medication, the actual total cholesterol and TG values
were imputed following the method of Kathiresan et al.
[8]- Imputation models were obtained separately by sex,
and the sequential imputation process was performed
separately within age-sex subgroups (10-year groups).
TG values were log-transformed. The phenotype values
were averaged over the multiple exams, as were the
corresponding covariate values. We adjusted the mean
HDL, mean LDL, and mean TG values for the averaged
covariates using linear regression and treated the
residuals as the phenotype values for the genotype-
phenotype analysis. Two covariate models were used for
the adjustment of phenotypes, separately by sex: Model
1: age and age®, and Model 2: age, age’, body mass
index, alcohol intake, and cigarette smoking.

Quality control of SNP genotype data

Quality control was completed using the computer
programs PLINK [9] and FEigenstrat [10]. SNPs were
filtered at a minor allele frequency <1%, Hardy-Wein-
berg equilibrium <10'° and call rate <90%. Samples
were filtered at a call rate <90%. There were no outliers
for exclusion, as determined using Eigenstrat.

Individual level single-SNP association analysis

Linear regression of each of the residual phenotypes
(Mean-HDL, Mean-LDL, Mean-TG) was performed using
PLINK for each of the 550 k SNPs that passed filtering,
based on a simple regression of additive SNP coding,
including all individuals and ignoring familial correla-
tion. Departures from the expected asymptotic distribu-
tions were assessed via quantile-quantile (Q-Q) plots for
each of the phenotypes.
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Region identification and testing via scan statistics

The scan statistic approach identifies regions of signifi-
cant SNPs and tests for regional significance [3]. It
requires the SNP position and the p-value for association
at that position. A group of SNPs tends to be identified
as a region if there is statistical evidence of clustering of
positions and of small p-values. The locations of SNPs
along a chromosome are assumed to follow a Poisson
process. To detect regions of association, the original
Poisson process is partitioned into two independent
Poisson processes, according to a chosen p-value thresh-
old level. The resulting sets of SNP locations are both
Poisson processes, with rates proportional to the original
process. When the assumption of independent processes
is violated, some regions may be detected solely because
of their marker correlation structure, so to reduce the
correlation among SNPs, we pruned the data by
choosing tagSNPs with a pair-wise linkage disequili-
brium (LD) R? threshold less than 0.5 [4].

Using the statistical package R, we identified regions of
association by evaluating windows along the chromo-
some including varying numbers of SNPs, and tested for
region-level significance. The regional p-value is the
probability of observing the same number of significant
markers over a distance as short as or shorter than
observed. The scan statistic is simply the distance
spanned by the group of markers of interest, i.e., the
sum of inter-marker distances. Under Poisson process
assumptions of independently identically distributed
exponential inter-SNP distances, the scan statistic fol-
lows a gamma distribution, so that the probability of a
high association cluster is a gamma cumulative distribu-
tion function. If this observed regional probability is
smaller than a pre-specified significance criterion, then
the group of markers is identified as a cluster of
significant associations not likely to occur simply by
chance. Genome-wide regional p-values were calculated
empirically, using 10,000 permutations of the tag-SNP
p-values across positions. In each permutation we kept
the top n regions, where n is the number of identified
regions in the original analysis [4].

Region identification and testing via database-defined
regions

Using the UCSC database, a list of regions meeting
genome-wide criteria for significance (p < 10™*) was
formed from the single-SNP tests. If a SNP was within +
5 kb of a gene, then the assigned gene region was the
gene endpoints + 5 kb. Otherwise, the SNP position + 5
kb was classified as an inter-gene region. In each of the
gene and inter-gene regions thus defined, we performed
region-based analyses using multi-variable regression of
k SNPs within the defined region using the generalized

http://www.biomedcentral.com/1753-6561/3/S7/S127

estimating equations (GEE) robust variance to account
for familial correlation, and the linear regression model:
E(residual lipid phenotype) = o + f; x¢1 + B2 Xg2 + ... +
Brxcr For test statistics, we calculated the global k df test
(Hotelling’s test), the Schaid test (1 df linear combina-
tion of SNP-specific test statistics; [5]), and the James
min P test (correlation adjusted minimum p-value; [11]).
To address SNP collinearity and reduce dimensionality,
we repeated these analyses using principal components
constructed from within-region SNPs [12].

Results and discussion

Markers from the 500 k chip, pruned for LD (R* < 0.5),
were used as input to the scan statistic analysis. The
proportion of markers retained per chromosome ranged
from 36 to 52%, with a mean of 40%. We specified a
SNP p-value threshold of 0.01 and a regional threshold
of 0.001. We categorized a scan statistic region as a gene
region if it overlapped with a defined gene region
(£ 5 kb), and called the remaining regions non-gene
regions. For HDL, 135 gene and 105 non-gene regions
were detected genome-wide, with similar proportions for
LDL and TG (133/110 and 100/104 for gene/non-gene,
respectively).

By design, the scan statistic can detect regions with
multiple SNP associations or regions with LD, and is
expected to fail to detect isolated SNPs. In order to
determine how many single-SNP associations we may
have missed, we compared the scan statistic regions with
a list of single SNPs with p-values < 10™. With this
threshold, there were 344 to 400 SNPs for each of the
three phenotypes, of which 75 to 80% were not included
within the scan statistic regions, and conversely 60 to
66% of the regions did not contain any of these SNPs.
Detailed results for HDL are provided in Table 1.

In a comparison of the scan statistic regions and the
SNP-database regions for each of the phenotypes,
approximately half of the genome-wide significant scan
statistic regions do not overlap with the SNP-database
regions, and are novel (Table 2). Defining the regions
statistically avoids the problem of ad hoc region

Table I: Comparison of scan statistic regions with single-SNP
tests for HDL having p-values < 10™*

Scan statistic regions

Single-SNP Non-gene Gene SNPs missed SNP
by scan totals
statistic regions
Inter-gene SNP 29 18 172 219
Within-gene SNP 0 35 146 181
Total no. SNPs 29 53 318 400
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Table 2: Comparison of scan statistic regions with SNP-database regions defined from single-SNP tests for HDL having p-values < 10™

SNP-database region

Scan-statistic region Inter-gene Within-gene Regions detected only by scan statistic Total no. regions
Non-gene scan statistic 33 (8)* 0 72 (12) 105 (20)
Gene scan statistic 10 (7) 38 (17) 87 (20) 135 (44)
Total 43 (15) 38 (17) 159 (32) 240 (64)

*Numbers in parentheses are counts for tests with genome-wide empirical p-values < 0.05.

definitions. On the other hand, gene-based regions
reflect prior knowledge and biological structure.

We also compared the region-based statistics (global,
Schaid, James minP) and scan statistic results for a list of
62 genes reported to be associated with HDL (17 genes),
LDL (25 genes), or TG (20 genes) according to
previously published reports [8,13,14]. In Table 3 we
report the genes identified as significant by either the
scan statistic (regional p-value < 107) or at least one of
the region-based tests (asymptotic p-value < 0.0002 for
analysis based on the principal components). In most
cases, the genes identified by the region-based tests were
also found by the scan statistic. In some cases, a scan
statistic region from the pruned data did not overlap
with a gene, but the results from the unpruned data did,
as indicated in the rank column. On the other hand, scan
statistics detected some candidate genes not identified by
any of the region-based tests.

Table 3: Region-based tests of candidate genes for lipid phenotypes

Conclusion

We consider chromosomal regions as the unit of
analysis, rather than SNPs, so that the dimensionality
problem is reduced at the genome-level. However, when
using the scan statistic, the issue of criteria for genome-
wide significance is difficult to address because the
dimension of the problem is not well defined with
testing of many possible overlapping regions consisting
of different window sizes. Here we used positional
permutation of p-values to obtain genome-wide regional
p-values.

In using the statistically defined regions without referring
to the top SNPs, it appears that although we missed a
number of significant single SNPs, we also identified
many additional regions not found as SNP-database
regions. The scan-statistic approach could also be used as
a first stage in GWAS analysis, followed by within-region
fine-mapping and/or direct sequencing. Once a region is

Gene-based analysis (p-values)®

Scan statistic analysis

Lipid Gene Chr. No.SNPs Global LR test Schaid test James min No. SNPs Region GW  Empirical GW
(No. PCs) P test p-value rank p-valueb
HDL
CETP 16 7 (3) 7.96 x 102 332x102° 3.81 x 1076 22 472107 2 <1.0 x 10°
LPL 8 5(3) 7.54 x 10”7 8.95x 107 8.52x10° 12 1.06 x 108 6 9.42 x 10™
ABCA| 9 52 (14) 1.67 x 10°¢ 0.15 .12 x 10 16 2.51 x 108 10 1.50 x 107
HERPUD | 16 2 (2) 0.36 0.15 0.45 22 472107 2 <1.0 x 10°®
SLITI 10 47 (10) 427 x 10™ 1.87 x 107* 0.02 6 6.15x 10* 197 0.31
LIPG 18 I (1) 0.29 0.29 0.29 39 7.81 x 102 [ <1.0 x 10°
ACAA2 18 5(2) 0.67 0.42 0.6l 39 7.81 x 107%¢ [ <1.0 x 107
LDL
PSRCI I I (1) 243 x102° 243 x10% 1.21 x 10 3 420 x 10¢  218° 0.02
LDLR 19 5(2) 2.67 % 10° 3.80 x 10°  9.91 x 10 15 1.82 x 108 14 1.10 x 107
APOB 2 10 (4) 2.33x 10" 5.41 x 10°"" 2,06 x 107 17 940 x 10" 7 2.22 x 10
HMGCR 5 5(2) 5.52 x 10 1.09x 10* 1.38x 10° NA¢ NA NA NA
BCAM 19 (1) 0.09 0.09 0.09 18 6.09 x 107" 3 4.69 x 10°
TG
TBL2 7 3(2) 8.38x 10" 278x10'* 6.81 x 1072 7 464 x 10" 106° 4.75 x 10°
LPL 8 5(3) 3.23x 107" 1.70x 10""  1.84 x 107 24 127 x 107" 3 <1.0 x 107
GCKR 2 4(2) 8.98x 10" 817x10'° 246x 10" 6 551 % 10¢ 40 0.013

?For tests in regression analysis of principal components (PCs). p-Values < 2 x 10 are in bold.
®The empirical p-value is the number of permutation regions with p-values smaller than the observed regional p-value divided by 10,000 n, where n is

240 for HDL, 243 for LDL, or 204 for TG. p-Values < 0.05 are in bold.
‘Rank from the scan statistic analysis using unpruned genotype data.

9INA indicates that the regional p-value was greater than the threshold 103
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detected, both approaches require follow-up with addi-
tional analyses to assess specific SNP variation within a
region.

List of abbreviations used

FHS: Framingham Heart Study; GEE: Generalized esti-
mating equations; GWAS: Genome-wide association
study;, HDL: High-density lipoprotein; LD: Linkage
disequilibrium; LDL: Low-density lipoprotein; SNP:
Single-nucleotide polymorphism; TG: Triglycerides.
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