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Abstract

Multivariate techniques are an important area of investigation for studying contributions of multiple
genetic variants to disease onset and pathology. We analyzed the Genetic Analysis Workshop 16
North American Rheumatoid Arthritis Consortium (NARAC) data using a principal-components
analysis (PCA) with an orthoblique rotation to identify specific subsets of single-nucleotide
polymorphisms (SNP) in the major histocompatibility complex (MHC) region associated with
rheumatoid arthritis (RA) and rheumatoid factor IgM (RFUW), and compared this method with a
traditional PC approach. Using the orthoblique PC-based clustering method, we identified new
clusters of SNPs across the MHC region associated with RA and RFUW, and replicated known SNP
cluster associations with RA, such as those in the HLA-DRB region.

Introduction
Testing a candidate gene or region for association with
phenotypes typically involves testing multiple single-
nucleotide polymorphisms (SNPs). This necessarily
introduces the issue of multiple test corrections, which
reduce power in order to control the type 1 error rate.
Therefore, development of multivariate methods to
identify causal loci and to reduce the burden of multiple
testing is an area of ongoing investigation for complex
diseases. Several multivariate techniques have been used
to examine whether multiple SNPs are associated with
disease or quantitative traits [1-4]. However, such

methods typically suffer from low power under various
scenarios or the inability to reduce the large number of
SNPs to a smaller subset that may point to a specific
location within the region.

Gauderman et al. introduced a principal-components
method to assess whether multiple variants within a
candidate gene are associated with disease [3]. Principal-
components analysis (PCA) is used to derive linear
transformations of the original SNP data, in which
eigenvectors are chosen to maximize the variance of each
PC relative to the overall variation in the region [3]. Each
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eigenvalue represents the variance of a particular PC, and
typically, only a subset of PCs that account for a large
proportion of the total variation are chosen for analysis,
reducing the number of parameters to be tested. These
PCs serve as covariates in an omnibus test of association
with disease or trait [3,4].

The PC approach has been shown to have greater power
than standard joint SNP or haplotype-based tests to
detect association between multiple SNPs and disease,
especially when the number of haplotypes is large [3].
However, the coefficients of each eigenvector are derived
from pair-wise correlations among the SNPs, and thus
lack specific interpretation. Eigenvector loadings of the
original variables on a PC do not reflect the true
importance of the SNPs to that PC, making the
association between multiple PCs and disease outcomes
difficult to interpret [4].

We propose a PC-based clustering method as an
alternative approach that reduces dimensionality of the
data and maintains the power of a PC approach, but
allows for unique identification of multiple SNPs in the
region being tested. The algorithm uses an orthoblique
rotation of PCs on genotype data to form distinct
clusters, where each cluster is defined by a specific
array of SNPs. A subset of clusters that explains a large
proportion of the total locus variation is selected, such
that those clusters can be tested for association with
disease outcomes.

The PC approach and our proposed oblique PC-based
clustering method were applied to the analysis of
rheumatoid arthritis (RA) data from Genetic Analysis
Workshop 16 (GAW16) (Problem 1). We compare and
contrast results from these two approaches and compare
findings with previously published results for these data
[5-8].

Methods
Sample data
Sample data included genome-wide association data
from Affymetrix GeneChip 100 k Mapping Array con-
taining 116,204 SNPs for RA and RA-related traits, such
as rheumatoid factor IgM (RFUW) and anti-cyclic
citrullinated peptide (anti-CCP), on 2,062 North Amer-
ican Rheumatoid Arthritis Consortium (NARAC) sub-
jects. Of the 1,250 SNPs in the major histocompatibility
complex (MHC) region on 6p21 spanning 3.2 Mb, we
restricted analysis to individuals with RA status and
complete genotype data (n = 1,187 on 838 SNPs).

Pre-analysis processing of data
Observed genotype frequencies were assessed for devia-
tion from Hardy-Weinberg equilibrium and allele

frequencies estimated using the computer program
Haploview (V.4.1). For these analyses, we excluded
markers with minor allele frequencies (MAFs) < 0.01,
and coded genotypes as 0, 1, or 2 according to the
number of minor alleles. Log transforms were applied to
quantitative trait data to approximate univariate normal-
ity. We performed PCA as described by Gauderman et al.
[3]. The subset s of PCs used in the analysis was
determined by the quantity that accounted for 80% of
the total variation.

The PC-based clustering method begins with the total k
SNPs initially grouped into a single cluster. Standard
PCA is performed on the initial cluster, with an
orthoblique rotation [9] of the first two PCs (PC1,
PC2). Each SNP is assigned to the rotated component
with which it has the higher squared correlation,
dividing the initial cluster into two disjointed clusters.
PC analysis within newly formed clusters and SNP
assignment continue iteratively, assigning SNPs to
clusters, and then re-testing each SNP to determine
whether assigning it to a different cluster increases the
amount of variance explained, with the goal of max-
imizing the total variance accounted for by the cluster
components. For k SNPs, we computed n clusters:
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where Cn is the nth cluster score, cn is a vector of
standardized cluster coefficients, and g is the vector of
SNPs [g1, g2, ..., gk]. While all SNPs are subdivided into a
total of n clusters, the number of SNPs within each
cluster varies, yielding cluster coefficients equal to zero
for SNPs not included in the nth cluster. Given the cluster
coefficients and individual genotype scores, cluster
scores are computed for each individual. For comparison
with traditional PC analysis, n was determined by the
number of clusters that accounted for 80% of the total
locus variation.

Association testing
For disease status, we analyzed PC scores (PCs) or cluster
score (Cn), using the following logistic framework:

Logit D C C C Cn n n[Pr( | ,..., )] ... .= = + + +1 1 0 1 1β β β

For continuous outcomes, we fit a multiple linear
regression model with PC scores or cluster scores as
covariates. Likelihood-ratio tests were used to contrast
the null model (intercept only) to that with either s PCs
(if traditional PCA) or n clusters (if cluster analysis) to
assess significance, with s or n degrees of freedom (df).
Given significant association under omnibus test of all
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PCs or PC-based clusters, 1-df Wald tests were used to
test association between RA or RA-related trait with each
PC or PC-based cluster conditional upon all PCs or
clusters. Because PC and cluster scores are estimated
from the correlation structure of the genotype data, it
should be noted that p-values resulting from any
association testing framework may not be completely
accurate. A bootstrap or randomization procedure that
includes computation of PC scores or cluster compo-
nents would likely yield more accurate p-values. For the
purposes of this paper, nominal p-values are reported.
All analyses were performed using SAS (v.9.1).

Results
Demographic data for 1,187 subjects (331 male, 856
female) included in this analysis are shown in Table 1.
Data analyzed consisted of 515 cases, 672 controls. RA-
related traits were measured in cases only. Clinically
relevant titres of anti-CCP (≥ 25U/ml) were found in 98%
of cases; for RFUW (≥ 20 IU/ml), it was 95%. Anti-CCP
ranged from 20 to 2,554 U/ml, with a mean ± SD of 194.9
± 234.9 U/ml. RFUW ranged from 9 to 4,225 IU/ml, with
mean ± SD 271.0 ± 471.7 IU/ml.

Of the 838 SNPs in the MHC region, nine were mono-
morphic and seven had MAFs < 0.01. PC analysis yielded
53 PCs that accounted for 80% of the variance and were
used for association testing. The MHC region was
significantly associated with RA status (p = 4.8 × 10-85)
and RFUW (p = 0.0159) (Table 2). We found no evidence
for association with PCs and anti-CCP (p = 0.62). Of the 53
PCs tested for association, 29 individual PCs were
significantly associated with RA (p ≤ 0.05) and 8 were
significantly associated with RFUW (p ≤ 0.05); 5 PCs
associated with both RA and RFUW. Among all PCs

significantly associated with either RA or RFUW, the
eigenvector coefficients ranged from -0.1480 to 0.1453.
Therefore, this analysis allows us to conclude that theMHC
region is associated with both RA and RFUW, but does not
permit us to distinguish the relative contribution of each of
the 822 SNPs to this association.

Our PC-based clustering algorithm identified 188
clusters that accounted for 80% of the variance and
were used to test for association. Cluster size ranged
from 1 to 14 SNPs. Using likelihood-ratio tests, the PC-
based cluster method also found significant association
between the MHC region and RA (p = 1.4 × 10-74) and
RFUW (p = 5.7 × 10-7) (Table 2). Similar to the PC
analysis, the PC-based clustering method showed no
evidence for association between the MHC region and
anti-CCP (p = 0.21). Twenty-four SNP clusters were
associated with RA (p ≤ 0.05) and 36 SNP clusters
showed association with RFUW (p ≤ 0.05); 2 clusters
were common to both outcomes.

The two SNP clusters most significantly associated with
RA are shown in Table 3. The majority of the SNPs in
Cluster 1 are located in the MHC class I region,
surrounding HLA-C and HLA-B. The squared correlation
coefficients between each SNP and its assigned cluster
(RO

2), shown in Table 3, indicate that most SNPs in
Cluster 1 share a high degree of correlation, and
relatively low correlation with SNPs in any other cluster
(RN

2). Additionally, low values for the ratio of one
minus each of these correlations indicates relatively
stable SNP-cluster assignment. The SNPs in Cluster 23
primarily span ~295-kb region of MHC class II bounded
by HLA-B and HLA-DQA1. The majority of these SNPs
cluster around the HLA-DRA, HLA-DRB5, and HLA-DRB1
loci, are highly correlated with each other, and show
stable SNP-cluster assignment.

The five SNP clusters most significantly associated with
RFUW are shown in Table 4. The majority of the SNPs
that comprise Clusters 2, 5, 24, and 183 are located in
the MHC class 1 region. Clusters 2, 24, and 183 represent
sets of SNPs between HLA-A and HLA-C, while SNPs in
Cluster 5 span a 74-kb region between HLA-C and
HLA-B. Because the SNPs in Cluster 2 reside proximally

Table 1: Subject characteristics

Cases
(n = 515)

Controls
(n = 672)

Sex
Male n (%) 131 (25.4%) 200 (29.8%)
Female n (%) 384 (74.6%) 472 (70.2%)

Anti-CCP (units/mL) Mean (SD) 194.9 (234.9) N/A
RFUW (IU/mL) Mean (SD) 271.1 (471.7) N/A

Table 2: HLA region association with rheumatoid arthritis and arthritis-related traits

RA affection status Anti-CCP RFUW

Method df c2 Statistica p-Value c2 Statistica p-Value c2 Statistica p-Value

Traditional PC analysis 53 556.274 4.8 × 10-85 49.28 0.6197 77.432 0.0159
PC-based cluster analysis 188 789.007 1.4 × 10-74 203.383 0.2098 297.838 5.7 × 10-7

ac2 statistic based on multi-df likelihood ratio test for number of PCs or clusters included in the full model vs. the null model (intercept only).
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Table 3: Cluster associations with rheumatoid arthritis case-control status

Cluster No. SNP Positiona MAF RO
2b RN

2c (1-RO
2)/(1-RN

2) Ratio p-Valued

1 rs3130544 31,166,319 0.125 0.805 0.682 0.612 0.0002
rs2442749 31,460,019 0.288 0.346 0.231 0.850
rs3099844 31,556,955 0.113 0.897 0.570 0.240
rs9267444 31,591,437 0.328 0.332 0.193 0.828
rs2734583 31,613,459 0.110 0.917 0.565 0.192
rs2857595 31,676,448 0.165 0.648 0.334 0.529
rs3131379 31,829,012 0.097 0.906 0.660 0.277
rs1270942 32,026,839 0.096 0.885 0.697 0.381
rs389884 32,048,876 0.094 0.878 0.707 0.415

23 rs6910071 32,390,832 0.350 0.675 0.504 0.656 0.0008
rs3817963 32,476,065 0.402 0.880 0.558 0.271
rs3806156 32,481,676 0.453 0.787 0.534 0.458
rs3763309 32,483,951 0.358 0.898 0.566 0.235
rs2395163 32,495,787 0.355 0.901 0.574 0.232
rs2395175 32,513,004 0.312 0.841 0.485 0.308
rs2395185 32,541,145 0.444 0.773 0.446 0.411
rs2516049 32,678,378 0.429 0.825 0.423 0.303
rs660895 32,685,358 0.361 0.832 0.515 0.346
rs532098 32,686,030 0.489 0.701 0.312 0.434

aBased on HapMap Data Release 23a (Phase II), NCBI Build 36, dbSNP Build 126.
bSquared correlation coefficient between a given SNP and its own cluster.
cThe next highest squared correlation coefficient between a given SNP and any other cluster.
dp-Value from 1 df Wald c2 for association with outcome, adjusted for all other clusters in the model.

Table 4: Cluster associations with RFUW

Cluster No. SNP Positiona MAF RO
2b RN

2c (1-RO
2)/(1-RN

2) Ratio p-Valued

2 rs2844670 31,113,705 0.152 0.811 0.488 0.370 0.0004
rs3130933 31,240,064 0.133 0.945 0.522 0.116
rs3094609 31,273,545 0.145 0.954 0.542 0.101
rs3130532 31,316,432 0.142 0.956 0.531 0.094
rs7382297 31,355,046 0.142 0.953 0.530 0.100
rs2905722 31,557,306 0.139 0.747 0.614 0.656

5 rs11967684 31,307,745 0.353 0.822 0.628 0.477 0.0004
rs9468925 31,366,816 0.353 0.902 0.464 0.183
rs3873379 31,370,148 0.290 0.876 0.478 0.237
rs3873380 31,370,417 0.303 0.938 0.499 0.124
rs9366778 31,377,152 0.387 0.750 0.517 0.518
rs3873386 31,381,724 0.374 0.852 0.514 0.305

20 rs12177980 32,794,062 0.447 0.888 0.443 0.202 0.0003
rs9461799 32,797,507 0.447 0.888 0.443 0.202
rs13199787 32,813,254 0.449 0.882 0.436 0.209
rs10807113 32,830,164 0.462 0.890 0.471 0.209
rs7756516 32,831,895 0.462 0.890 0.471 0.209
rs2301271 32,833,171 0.413 0.856 0.427 0.251
rs7453920 32,837,990 0.413 0.856 0.425 0.250
rs6903130 32,840,188 0.495 0.820 0.369 0.286
rs6901084 32,844,914 0.469 0.890 0.432 0.194

24 rs9468841 30,933,266 0.076 0.570 0.146 0.504 0.0007
rs7756521 30,956,232 0.178 0.888 0.360 0.175
rs3873334 31,004,126 0.167 0.929 0.336 0.107
rs12697941 31,012,693 0.152 0.928 0.302 0.104
rs3757340 31,029,861 0.270 0.554 0.307 0.644

183 rs3868542 31,253,818 0.370 0.772 0.366 0.360 0.0001
rs887464 31,253,899 0.431 0.709 0.276 0.402
rs4122189 31,275,906 0.233 0.795 0.556 0.462

aBased on HapMap Data Release 23a (Phase II), NCBI Build 36, dbSNP Build 126.
bSquared correlation coefficient between a given SNP and its own cluster.
cThe next highest squared correlation coefficient between a given SNP and any other cluster.
dp-Value from 1 df Wald c2 for association with outcome, adjusted for all other clusters in the model.
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upstream of HLA-C and those in Cluster 5 immediately
downstream of the gene, it is likely that both clusters
jointly capture the variation in the HLA-C locus. The
SNPs in Cluster 20 are located in the MHC class II
region. Interestingly, three of the nine SNPs in Cluster 20
are located within HLA-DQB2, and the remaining six are
situated in regions directly flanking HLA-DQB2, imply-
ing that Cluster 20 may represent the DQB2 locus. Also
shown in Table 4, all SNPs within each cluster are highly
correlated, and each cluster is of relatively stable fit.

Discussion
Traditionally, investigators examining gene regions or
specific candidate genes might genotype hundreds of
SNPs, possibly perform tag SNP selection, and test each
SNP for association with disease or disease-related traits.
Unfortunately, this approach necessitates multiple test
correction, resulting in a significant reduction in power.
PC analysis has been suggested as an exploratory
approach that parses the information contained in a
large number of correlated SNPs into a smaller number
of orthogonal PCs that can be analyzed for association
instead of individual SNPs [3,4]. A significant omnibus
test of PCs indicates statistical association between a
given region, as represented by the SNPs genotyped, and
disease outcomes. However, PCA cannot be used to
identify the specific SNPs contributing to the association,
and therefore still requires testing of individual variants,
to isolate the specific SNP(s) contributing to the
association. We introduce a PC-based clustering method
that retains many of the favorable attributes of PC
regression, but allows for identification of the subset of
SNPs contributing to the evidence for association, which
reduces the multiple testing burden. We compared the
traditional PC approach to the PC-clustering method
using the NARAC data, and demonstrate that PC-
clustering identifies variants in the 3.2-Mb MHC region
contributing to RA risk and variation in RA-related traits.

While traditional PC analysis makes it possible to
analyze only the subset of PCs that represent most of
the variation in a candidate region, PCs still represent
linear combinations of all SNPs in the data set, which
makes interpretation of significant PCs difficult. Upon
inspection of the 29 PCs from the full model found to be
significantly associated with RA status, we found the 822
eigenvector loadings on these PCs to range from -0.148
to 0.145, with most hovering close to 0. Thus, we were
only able to infer from PC analysis that variation in the
MHC region, as represented by these 822 SNPs, is
strongly associated with RA risk. Additional interpreta-
tion of the specific SNP(s) driving significant associa-
tions between PCs and phenotypes can only be achieved
by testing all 822 SNPs individually for association. In

contrast, the PC-based clustering algorithm we employed
reduced 822 SNPs to 188 discernable SNP clusters that
also accounted for 80% of the regional variation. The
clusters, which are subsets of the 822 SNPs analyzed,
allow unique identification of those SNPs that may
contribute to the evidence for association. For example,
of the 24 SNP clusters associated with RA status, Cluster
1 and Cluster 23 were found to be the most significant.
Cluster 1 represents a distinct set of SNPs covering
~883 kb of the 3.2-Mb region examined, while Cluster
24 covers a non-overlapping region of ~295 kb. While
Cluster 1 represents SNPs flanking HLA-C and HLA-B,
Cluster 23 comprises SNPs surrounding the HLA-DRA,
HLA-DRB5, and HLA-DRB1 loci. In fact, rs3099844 and
rs2857595 found in Cluster 1 were previously identified
by Lee et al. [5] as belonging to a haplotype associated
with anti-CCP positive RA, which 98% of cases in the
present study were. Additionally, rs2395175 in Cluster
23 ranked among the top ten SNPs for association with
RA in a recent genome-wide association study by Plenge
et al. [8].

The clustering algorithm also identified 36 SNP clusters
found to be associated with variation in RFUW among
RA cases. The most significant associations included
Clusters 2, 5, 20, 24, and 183. Clusters 2, 5, 24, and 183
are composed of SNPs located in the chromosomal
region between HLA-A and HLA-C, with Clusters 2 and 5
capturing the specific variation in and around HLA-C.
Interestingly, Yen et al. demonstrated that HLA-C alleles
may modulate the pattern of RA progression [10].
Moreover, Lee et al. found rs887464 in Cluster 183 to
be associated with RA affection [5]. Cluster 20, com-
posed of nine SNPs, represents variants located within
and proximal to HLA-DQB2. Previous examination of
genes in the MHC class II region, conditional on the
HLA-DRB loci, has shown the HLA-DQB2 locus to have a
vital role in RA [11,12]. As RA is heterogeneous in terms
of the progression of joint destruction [13], further
examination of the SNPs in these clusters may provide
information regarding genetic determinants of RA
progression or symptom severity.

While our PC-based clustering method offers the inter-
pretability a traditional PC approach lacks, there are
other issues to be considered. First, we required more
clusters than PCs to satisfy the 80% explained-variance
threshold, which increased the degrees of freedom
utilized for the omnibus test of association. The
additional degrees of freedom usually results in reduced
power to detect global association compared to the
traditional PC approach. This may be due to the fact that
while PCs are orthogonal, or independent, cluster
components formed by the clustering algorithm are
oblique. At each iteration, PC1 and PC2 are computed
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from a distinct set of SNPs that have been assigned to a
given cluster, such that the first PC of one cluster may be
correlated with the first PC of another cluster. Thus,
although each SNP is assigned to the cluster with which it
has the highest squared correlation, all SNPs share some
degree of correlation with the other clusters they were not
assigned to. This underlying correlation among clusters
may be indicative of the correlation pattern among SNPs,
although not necessarily haplotype blocks, and thus
better reflect the true relationship of the variants within
the MHC candidate region, but may also result in slightly
reduced power to detect association.

Conclusion
Both traditional PC and PC-based clustering methods
indicate the MHC gene region is significantly associated
with RA and RFUW. However, traditional PCA is unable
to highlight which SNPs contributed to this association.
In contrast, the PC-based clustering method maintains
many of the virtues of the traditional PC approach, but
has the advantage of isolating the SNP(s) contributing to
evidence for association. Therefore, the PC-based cluster-
ing method may be a better approach to testing multiple
variant associations with phenotypes of interest.
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