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Abstract

In this paper we test for association between copy number variation and diabetes in a subset of
individuals from the Framingham Heart Study. We used the 500 k SNP data and called copy number
variation using two algorithms: the genome alteration detection algorithm of Pique-Regi et al. and
the software Golden Helix. We then tested for association between copy number and diabetes
using a gene-based analysis. Our results show little evidence of association between copy number
and diabetes status. Furthermore, our results indicate a relatively poor level of agreement between
copy number calls resulting from the two programs. We then examined potential causes for this
difference in results and the implications for future studies.

Background

One of the most important challenges facing the field of
biology today is making sense of genetic variation. One
form of variation that is gaining an increasing level of
attention is copy number variation (CNV). The term CNV
is used to encompass a variety of polymorphisms that
occur at the sequence level and that affect the copy number
of regions of genetic material. Examples include insertions,
deletions, rearrangements, and duplications. While
humans have CNV, the degree of that CNV is only now
becoming appreciated [1,2], and its influences on pheno-
typic variation is not yet well understood. However, while

a number of associations between single-nucleotide
polymorphisms (SNPs) and disease have been verified, it
remains the case that the effect sizes of these polymorph-
isms appear relatively small, with reported odds ratios
typically being below 1.5 (see Estivill and Armengol [3] for
a recent review). While the reasons for this remain unclear,
it is plausible that SNP data are not capturing all the
relevant associations. Consequently, in this paper we
implement population-based tests for association between
CNV and phenotypic variation within the Framingham
Heart Study samples provided as part of Genetic Analysis
Workshop 16 Problem 2.
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Methods

Copy number inference

CNV inference algorithms start by analyzing ‘intensities’
for each probe at each SNP location. Intensities are
generated from .cel files via the Affymetrix Power Tools
software [4]. Our major focus is then on two CNV-calling
methods: 1) the genome alteration detection algorithm
(GADA) of Pique-Regi et al. [5], and 2) the HelixTree
copy-number analysis module (CNAM) [6]. Both meth-
ods begin by normalizing intensities for SNPs across all
chips. Such normalization is designed to correct for
problems such as batch effects (the intensities for a
sample may depend globally upon the batch in which
the sample was analyzed) or local defects on the
genotyping hardware. The CNAM analysis uses a
proprietary normalization scheme for which details are
not available. The GADA analysis employs a median
normalization step [5] followed by the widely used
normalization scheme within the Affymetrix Power
Tools suite [4].

GADA copy number analysis employs three main steps:
1) it uses a compact linear algebra representation for the
genome copy number from normalized probe intensi-
ties, 2) it applies a sparse Bayesian learning technique,
and 3) it uses a backward-elimination procedure that
ranks the inferred points from the previous step and also
efficiently adjusts the accuracy trade-off between sensi-
tivity and false-discovery rate. Pique-Regi et al. [6] tested
their method on a variety of actual and simulated data
sets and concluded that it achieved the highest accuracy,
lowest false-discovery rate, and was, by several orders of
magnitude, faster than competing methods.

CNAM employs an optimal segmenting algorithm that
searches regions of markers in which log, ratios vary
significantly from region to region and therefore confer
variation in copy number. Log, ratios are created by
normalizing raw intensity data against a reference
sample. The CNAM segmenting process is optimized
through 1) subdivision of the chromosomal region of
markers into a moving window of sub-regions and 2) a
permutation algorithm that validates the found cut-
points. We used a moving window of 10,000 markers.
One thousand permutations were used to assess sig-
nificance.

Association between variation in copy number and
phenotype

One of the central motivations for better understanding
patterns of CNV is to then relate those patterns to
phenotypic variation. Such applications are in their
infancy, and in this paper we propose a relatively
straightforward technique for addressing this issue. The

http://www.biomedcentral.com/1753-6561/3/S7/S133

output from the CNV calling algorithms we employ here
can be regarded as a piece-wise constant function that
indicates the estimated number of copies of each allele for
each individual over the entire length of the genome.
Changes in state of this function correspond to changes in
(estimated) copy number. The points at which these
changes in copy number occur are likely to be correlated
across individuals, due to shared ancestry, but will
certainly still vary across individuals. Thus, when sum-
marizing the output of such an algorithm across an entire
sample of interest, we break the genome up into a set of
intervals, I = {I;}, j = 1, ..., n, such that the copy number
does not change for any individual in the sample within any
interval. For convenience, we define intervals to start and
end at locations corresponding to the midpoint between
neighboring SNPs. Clearly, it is most sensible to use a set I
that contains the minimal number of intervals, which
means that the end of an interval will correspond to a
point at which estimated copy number changes for at least
one member of the sample.

Our analysis method focuses directly on genes. For a
given gene we calculate the mean copy number across all
segments contained within that gene for each individual.
Because estimated copy number is not obviously
normally distributed, we then test for a difference in
the rank of estimated copy number between cases and
controls using a Wilcoxon rank-sum test. This results in a
p-value for each gene.

Results

Our analysis currently focuses on a subset of Offspring
Cohort individuals with diabetes. In order to protect
against undiagnosed diabetes, we insisted that cases had
a fasting plasma glucose measure of at least 126 mg/dl,
while controls had a fasting measure less than 110 mg/
dl. The controls were also frequency-matched to cases
by 5-year age intervals, sex, and ever smoked status (age
and smoking history taken at baseline). Some indivi-
duals are related, but the majority are not (at least by
the pedigree information provided). This resulted in a
final sample size of 194 cases and 213 controls, for
which we analyzed the 500 k SNP data. We then called
copy number. Space prohibits a display of estimated
copy number here, but, in summary, we observed that
previously known sites of copy number variations [2]
were detected as such in this data set, and that, for each
method, there is clear correlation between the locations
at which copy number changes across individuals
(despite the fact that the algorithm call copy number
independently for each individual). As expected, the
number of changes of copy number in a gene was
directly proportional to its length (correlation coeffi-
cient = 0.89).
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Table 1 presents a summary of the results for the GADA
and CNAM analyses for each chromosome. No gene
attains genome-wide significance when tested for asso-
ciation between copy number and diabetes. However,
some interesting features are observed. For example,
under the null hypothesis of no association, p-values
should be uniformly distributed, with each gene having
a probability of 0.05 of being reported as ‘significant’ on
this basis. Thus, for each chromosome, the number of
genes showing association at the level p < 0.05 will be
binomially distributed. We used this to test whether
there was an over- or under-representation of such
associated genes on any chromosome. After a multiple
comparison correction, several chromosomes showed
evidence of excess, or lack, of associated genes. Further-
more, there is a clear excess of small p-values for the
CNAM analysis. This can be seen in Figure 1, where we
show a quartile-quartile (Q-Q) plot of observed vs.
expected p-values genome-wide (we plot -log;, of the p-
values). The Q-Q plots reflect the relative over- or under-
abundance of small p-values resulting from the CNAM or
GADA analysis. In Figure 2 we show how the distribu-
tion of the genes with the smallest p-values when tested
for association with diabetes varies along the genome for
the GADA and CNAM analyses. There appears to be little
agreement between the two methods. This raises the
question of why the results of the methods show such
poor agreement among these genes. Recall that the first
step for both methods is the normalization of SNP
intensities, but that the two methods employ different
normalization techniques. We therefore examined the
degree of agreement between the SNP intensities after
normalization. We show this in Figure 3 (left side), a
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Table I: Summary of gene-based CNV associations for GADA
based segmentation (Wilcoxon rank-sum test)

% Significant genes®

Chr Affymetrix Genotyped GADA CNAM
genes® genes®
| 1650 1500 5.12 12.60
2 1046 974 0.72 16.32
3 893 829 0.36 13.51
4 661 634 1.31 1.57
5 722 680 7.45 22.35
6 883 822 1.84 18.86
7 709 655 3.09 6.87
8 539 505 10.18 1.78
9 632 582 0.87 4.8l
10 636 603 1.84 8.96
I 1028 907 1.68 4.85
12 871 799 4.80 15.14
13 295 287 8.8l 10.45
14 527 474 4.25 12.66
15 507 474 1.92 9.92
16 580 483 5.64 3.52
17 851 712 8.09 0.14
18 241 241 4.17 1.66
19 912 713 1.51 0.14
20 470 439 2.75 5.47
21 201 187 0 9.09
22 365 326 3.12 0
Total/Average 15219 13826 3.6l 8.62

*Overall number of genes as defined by Affymetrix annotation files.
®Number of those genes for which we had SNP intensity data.
“Percentage of those genes in which associated CNV was detected at
the p = 0.05 value (uncorrected for multiple comparisons) using GADA
and CNAM.
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Q-Q Plot of p-values for gene-based average CNV associations for GADA and CNAM. The plot shows observed
(x-axis) and expected (y-axis) values of -log o p-values resulting from the gene-based test for association between CNV and

diabetes using the GADA and CNAM analyses.
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Top 20 genes with most significant CNV associations. We show the distribution of potentially significant genes varies
along the genome. The upper plot shows results from the GADA gene-based analysis; the lower shows those from the CNAM
analysis. In each case, red bars show the 20 genes that have the smallest p-value when testing association with diabetes.
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Scatter plots. The left plot shows a heat-map of normalized SNP intensities resulting from the CNAM normalization (x-axis)
and APT normalization used for the GADA analysis (y-axis) for a randomly chosen individual. There is a striking lack of
correlation between the results of the two normalization routines. The right plot is a scatter plot of resulting copy number
calls for randomly chosen (but representative) regions along the genome. Again, we note a striking lack of agreement between

calls resulting from CNAM and GADA.

scatter plot of the intensities resulting from the two
schemes. The results are striking: there is very poor
correlation between the normalized intensities. Thus,
even if the methods were using identical routines to call
copy number, which they are not, we would expect to
obtain widely different calls of copy number, with
consequent large differences between p-values resulting

from subsequent tests of association between copy
number and phenotype. We show the poor agreement
in copy number in Figure 3 (right side). It is important to
note that both methods use somewhat arbitrary defini-
tions of upper and lower cut-points (CU and CL,
respectively), defined such that if the normalized
intensity for a SNP is below CL it is determined to
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have a copy number less than two, whereas if normal-
ized intensity is above CU the copy number is called as
greater than two; otherwise the copy number is called as
two. These arbitrary cut-points are different for the two
methods and, combined with the differing results from
normalization, result in wildly different calls of copy
number. Most often both methods call copy number as
two, but it is seldom the case that the methods
simultaneously determine copy number to be other
than two for any given SNP. This, clearly, is a concern.

Conclusion

The importance of CNV has only recently become
appreciated. The relationship of CNV to phenotypic
variation is even less well developed. While we hope the
analysis presented in this paper is a useful step forward
in this area, it merely scratches the surface of what is
likely to be an extremely complex challenge. CNV lacks
some of the ‘neatness’ of SNP data. It does not occur at
well defined positions (i.e., the points at which CNV
changes is often different across individuals). Further-
more, for a variety of reasons, the 500 k chip platforms
are not ideal for detecting CNV when compared with
more recent platforms. It is also the case that many
functional mutations occur outside genes (in promoter
regions, for example). As such, many regions of CNV
may not be detected. It is also likely to be challenging to
detect small CNVs using these technologies.

An approach in which we break the genome into regions
of maximal length, such that copy number remains
constant for each individual within each region, results
in an extremely large number of regions (around 82,000
regions for the samples analyzed in this paper). While
each region can be treated as if it were a (multi-allelic)
locus, and marginal tests can then be performed, such
tests are likely to be far from optimal.

The principal reason for this is the correlation between
intervals. This is directly analogous to the situation with
SNP analysis, but may well be even more complex in this
new setting. An alternative approach might be to attempt
to relate SNP variation to CNV, and adopt an approach
akin to the tag-SNP idea.

In this paper we attempted to move past the perils of a
strategy based upon marginal tests by conducting a gene-
at-a-time analysis, relating mean copy number within a
gene to phenotype. Such an approach seems reasonable,
succeeds in reducing the analysis to a reasonable number
of tests, and thereby avoids the worst excesses of
multiple comparison corrections. However, it should
be noted that the very poor agreement in results from the
two methods explored in this paper indicates that
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substantial work remains to be done. It is this lack of
agreement that represents the principal lesson to be
drawn from the current study. Normalization is regarded
as an important, but somewhat routine step in analyses
such as these. However, our paper demonstrates that the
particular method of normalization chosen can have a
key influence on the results obtained. In our case, the
two normalization methods are both widely used, and
appear inherently sensible, but result in normalized
intensities that are very poorly correlated across meth-
ods. Consequently, subsequent analyses will produce
wildly different results. As the phrase “garbage in,
garbage out” reminds us, it is important to ensure that
such normalization routines are adding signal, rather
than noise to the data. As such, there is an urgent need
for a widespread comparison of normalization methods
in order to better assess which of them is most effective.

Finally, it should also be noted that, while we look at all
genes in the present study, there is little reason a priori to
expect candidate genes chosen on the basis of a SNP
study to also have a function due to CNV. It is entirely
possible that genes that affect phenotype through CNV
will be distinct from those that have an effect due to SNP
polymorphism. In a recent study, Stranger et al.
examined data from Phase 1 of HapMap and noted
that SNPs and CNVs captured 83.6% and 17.7%,
respectively, of the total detected genetic variation in
the expression of around 15,000 genes, but that “the
signals from the two types of variation had little overlap”
[7]. Other studies take a different view (e.g., McCarroll
et al. [8]).

List of abbreviations used

CNAM: Copy-number analysis module; CNV: Copy-
number variation; GADA: Genome alteration detection
algorithm; Q-Q: Quantile-quartile; SNP: Single-nucleo-
tide polymorphism.
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