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Abstract

Many phenotypes may be influenced by the prenatal environment of the mother and/or maternal
care, and these maternal effects may have a heritable component. We have implemented in the
computer program SOLAR a variance components-based method for detecting indirect effects of
maternal genotype on offspring phenotype. Of six phenotypes measured in three generations of the
Framingham Heart Study, height showed the strongest evidence (P = 0.02) of maternal effect. We
conducted a genome-wide association analysis for height, testing both the direct effect of the focal
individual’s genotype and the indirect effect of the maternal genotype. Offspring height showed
suggestive evidence of association with maternal genotype for two single-nucleotide polymorph-
isms in the trafficking protein particle complex 9 gene TRAPPC9 (NIBP), which plays a role in
neuronal NF-�B signalling. This work establishes a methodological framework for identifying
genetic variants that may influence the contribution of the maternal environment to offspring
phenotypes.

Background
Many phenotypes may be influenced by the prenatal
environment of the mother and/or maternal care, and
these maternal effects may have a heritable component.
Much research has focused on the impact of measurable
properties of the mother (e.g., adiposity, diabetes,
alcohol, or tobacco use) on subsequent phenotypes in
their children (e.g., birthweight [1], insulin resistance
[2], cognitive function [3]). A more general question is:
does the mother’s measured genotype influence off-
spring phenotypes, whether or not the intermediate

maternal phenotypes are known or measurable? This
‘agnostic’ (with respect to maternal phenotype)
approach has the potential both to identify novel genetic
variants of maternal effect and, via ‘reverse epidemiol-
ogy,’ to identify novel maternal phenotypes for such
effects.

For the purposes of this study, we accept the strict
definition of a genetic maternal effect as the indirect
effect of maternal genotype on offspring phenotype [4],
as distinct from asymmetric transmission of parental
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alleles (e.g., mitochondrial inheritance [5]) or asym-
metric expression of alleles in the offspring depending on
parent of origin (e.g., imprinting [6]). Here we develop
mixed variance-components models in the computer
program SOLAR [7] to estimate maternal random effects
on quantitative phenotypes, and use the best suchmodels
as null hypotheses for measured-genotype genome-wide
association tests of single-nucleotide polymorphism
(SNP) genotypes of individuals and their mothers.

Methods
Data
Data include adult quantitative phenotypes and Affyme-
trix SNP genotypes provided in the Genetic Analysis
Workshop (GAW) 16 Framingham Heart Study (FHS)
data release (Problem 2). All authors of this study are
‘approved users’ of these data per the NHLBI Data Use
Certification of April 2008. Analysis of these data was
approved by the Institutional Review Board of the
University of Texas Health Science Center, San Antonio.

Outlying phenotype measurements (more than four
standard deviations from the mean) were removed
from the lipid measures (10 for total cholesterol, 9 for
high-density lipoprotein (HDL), 43 for triglyceride (TG))
on the assumption that these represented assay errors.
The data were normal-quantile-transformed before
analysis using the SOLAR “inormal” option to meet the
distributional assumptions of the variance components
and regression methods. The normal quantile (“inverse
normal”) transformation is robust to a range of
departures from normality and also removed scale effects
by standardizing the data. Transformations of this type
are convenient for batch processing of multiple pheno-
types (e.g., Peng et al. [8]).

Individuals with incomplete genotype data were given
imputed genotype scores for the missing markers using
the – infer option in the computer program Merlin
[9,10] Merlin imputes an expected genotype score based
on the probability of each possible genotype at a locus
given information on marker allele frequency, adjacent
markers, and pedigree relationships. We chose not to
exclude any SNPs or individuals on the basis of number
of incomplete genotypes (unless no genotypes were
available at all), given the robustness of imputation from
family data [11]. Genotypes were similarly imputed for
all SNPs for the non-genotyped implicit mothers of
genotyped and phenotyped founders. These maternal
genotypes entered the association analysis as properties
of their offspring (see “Measured genotype analysis,”
below); the ‘virtual’ mothers did not enter the analysis
otherwise.

Variance components estimation
We have implemented in SOLAR a general model for
incorporating polygenic maternal effects [12-14]. Briefly,
in the absence of dominance and epistatic effects, the
phenotypic covariance between individuals i, j may be
decomposed into additive genetic and environmental
components in the usual way:

σ σ φ σz e ai j I i j i j( , ) ( , ) ( , ) ,= +2 22 (1)

where I(i, j) is an identity term (1 if i = j, or 0 otherwise),
j(i, j) is a coefficient of coancestry, sz(i, j) is the
phenotypic covariance, and s2

e and s2
a are, respectively,

environmental and additive genetic variances. The
additive genetic covariance can be further decomposed
to include maternal effects:

σ φ σ φ φ σ σ ρ φa a a am a ami j i j i mo j j mo i mo( , ) ( , ) , _ ( , _ ) (,= +[ ] +2 2 22+ 2 ( ) __ , _ ) ,i mo j amσ 2

(2)

where 2j(i, mo_j) is the coancestry coefficient for i and
the mother of j, and 2j(mo_i, mo_j) is the coancestry of
the mothers. σ am

2 is the additive genetic variance due
to maternal effects, and ra, am is the additive genetic
correlation between direct and maternal effects. Decom-
position of the environmental component of Eq. 1 is
modified from Eq. 14 of Bijma [14]:

σ σe ei j R i j( , ) ( , ) ,= 2 (3)

with R = 1 if i = j (equivalent to the identity matrix in Eq. 1),
rsibŒ [0,1] if i, j are siblings or half-siblings, rmoŒ [-1,1] if i, j
are mother and offspring, or 0 otherwise. Our modification
from Bijma [14] was that twins were not treated differently
than other siblings because dizygotic twins could not be
distinguished in the de-identified FHS data. Our full mixed
model also included the fixed effects of relevant covariates
and the random effect of mitochondrial inheritance, s2mito;
the mitochondrial variance component is structured by a
matrix whose elements are 1 if i, j belong to the same
matriline or 0 otherwise, as described by Czerwinski et al.
[15].

Measured genotype analysis
Measured genotype analysis was conducted for each
polymorphic SNP by including its genotype score (the
number of copies of the minor allele, range [0,2] with
non-integral values for imputed genotypes) as a covari-
ate in the mixed model [16]. Unlike standard association
analysis, we included the indirect effect of the mother’s
genotype in addition to the direct effect of the focal
subject’s genotype. These effects were tested separately,
with an additional test of the mother’s genotype
conditional on that of the focal subject. The latter test
was intended to account for the non-independence of
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maternal and offspring genotypes: reduction of evidence
of maternal association in the conditional test would
suggest that the unconditioned maternal effect repre-
sented a ‘bleed-through’ of the direct effect, while an
increase in evidence would suggest that the locus affects
the trait both directly and indirectly.

Results
Screening for evidence of maternal effects
We tested our maternal random effects model on
quantitative phenotypes (height, weight, body mass index
(BMI), systolic blood pressure (SBP) and diastolic blood
pressure (DBP), fasting total and HDL cholesterol and
triglycerides) in individuals measured at exams when they
were as similar as possible in mean age (Table 1). Sex, age,
age2, and their interactions were included as covariates in
all models, and use of antihypertensive medication was a
covariate for SBP and DBP. The use of an indicator
variable-type covariate for medication has been ques-
tioned, especially with regard to BP [17,18]. In response to
a reviewer’s concern, we re-ran the BP analyses while
correcting for medication by adding 10 mm Hg to BP
measures in medicated individuals, as recommended [17];
this did not substantially change our results (data not
shown). The impact of alternative corrections for medica-
tion may have been greater if we had proceeded to
association analysis of the BP traits, because we would then
be testing for a difference in means. HDL-C and TG
measures were not available for the original cohort and did
not give evidence of maternal effect (data not shown); they
were not considered further. Results for the remaining
phenotypes are given in Table 2.

Table 3 gives the log likelihoods for the minimal polygenic
(PG) model (Eq. 1), a PG model with mitochondrial effect,
and the saturated model of Table 2. Height showed the

strongest evidence of a maternal effect (compared with the
PG-mito model, P = 0.02 at 4 degrees of freedom; 4 df is
probably over-conservative [19]). Interestingly, this trait
initially showed a significant mitochondrial effect com-
pared with the PG model (P = 0.008, 1 df), evidently
capturing some of the maternal effects when these were not
explicitly modeled.

Measured genotype analysis
We performed measured genotype (MG) tests of associa-
tion for own genotype (OMG), maternal measured
genotype (MMG), and conditional maternal measured
genotype (CMMG), for 476,987 autosomal SNPs from the
Affymetrix 500k panel. The saturated maternal effects
model was used as the null for all analyses. No SNP gave
significant evidence of own- or maternal-genotype associa-
tion with height when corrected for multiple testing using
a Bonferroni test (critical test statistic Λ = 28.374 for
genome-wide a = 0.05 and 1 df). We did not attempt to
account for any linkage disequilibrium among the SNPs in
our sample. The SNPs with strongest evidence for OMG,
MMG, and CMMG are listed in Table 4.

Discussion
Several recent studies have undertaken genome-wide
association analysis of human height [20-22]. These studies
have typically examined very large numbers of individuals
(~10,000-25,000, with multi-stage designs), larger than the
6,775 individuals in the FHS cohort available for this
study. These studies agree in finding numerous loci
associated with height, as may be expected for a trait
long assumed to be polygenic. Under these circumstances,
it is not surprising that we did not replicate specific SNPs or
locations identified in these larger studies. It should be
noted, however, that we did find suggestive evidence of
association (OMG) with a broad genomic region identified
by Gudbjartsson et al. [21]: 1q24-25 (Table 4). Our
candidate genes in this region isMPZL1 (OMIM #604376),
a protein tyrosine phosphatase involved in cell prolifera-
tion and differentiation. Our next four highest ‘hits’ were in
the mucolipin2 gene MCOLN2 on 1p22.

Because the published genome-wide association study
on height used unrelated individuals, none reported

Table 1: FHS cohorts/examination periods used in this study

FHS Cohort/Exam Period N Age in years
[mean (SE)]

Original/Exam 4 (1954-1958) 356 40.9 (0.20)
Offspring/Exam 3 (1983-1987) 2,422 46.3 (0.19)
Generation 3/Exam 1 (2002-2005) 3,997 40.2 (0.14)

Table 2: Parameter estimates [mean (SE)] for saturated random-effects model

Trait s2
a s2

am ra, am s2
e rsib rmo s2

mito

Height 0.64 (0.02) 0.19 (0.07) -0.21 (0.16) 0.23 (0.08) 0.03 (0.25) 0.05 (0.29) 0.05 (0.12)
Weight 0.68 (0.03) 0.22 (0.08) -0.38 (0.16) 0.50 (0.04) 0.00a 0.02 (0.12) 0.00 (0.09)
BMI 0.76 (0.04) 0.24 (0.10) -0.51 (0.14) 0.60 (0.04) 0.00a -0.02 (0.12) 0.00a

SBP 0.53 (0.04) 0.04 (0.04) -1.00a 0.74 (0.04) 0.04 (0.03) 0.00 (0.05) 0.00a

DBP 0.48 (0.04) 0.24 (0.09) -0.33 (0.30) 0.80 (0.03) 0.00a 0.07 (0.05) 0.00 (0.08)
Cholest. 0.58 (0.05) 0.12 (0.32) -0.11 (0.75) 0.75 (0.06) 0.05 (0.06) 0.06 (0.07) 0.13 (0.09)

aEstimate on boundary; no SE computed.
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maternal effects. Interestingly, among our strongest
maternal associations are repeated hits in two regions:
the TRAPPC9 gene on chromosome 8 and an intergenic
region on chromosome 18. The trafficking protein
particle complex 9 gene TRAPPC9 (NIBP) plays a role
in neuronal NF-�B signalling [23] but has not, to our
knowledge, been associated with stature in any pub-
lished study. The existence of repeated (albeit suggestive)
associations in this gene makes it a candidate for further
investigation of the effects of maternal genotype on
height.

Conclusion
We have implemented combined random-effects, mea-
sured-genotype fixed effects approach for discovery of
genetic variants contributing to the indirect effect of
maternal genotype on offspring phenotype. We have
identified two regions on chromosomes 2 and 8 - with
suggestive association at two SNPs in each region - that
may contribute to maternal effects on human height. The
tools developed here should be of use for a variety of
phenotypes and diseases for which an effect of maternal
environment is known or suspected, including height,
hypertension, birthweight, and the metabolic syndrome.
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