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Abstract

The current trend in genome-wide association studies is to identify regions where the true disease-
causing genes may lie by evaluating thousands of single-nucleotide polymorphisms (SNPs) across
the whole genome. However, many challenges exist in detecting disease-causing genes among the
thousands of SNPs. Examples include multicollinearity and multiple testing issues, especially when a
large number of correlated SNPs are simultaneously tested. Multicollinearity can often occur when
predictor variables in a multiple regression model are highly correlated, and can cause imprecise
estimation of association. In this study, we propose a simple stepwise procedure that identifies
disease-causing SNPs simultaneously by employing elastic-net regularization, a variable selection
method that allows one to address multicollinearity. At Step 1, the single-marker association
analysis was conducted to screen SNPs. At Step 2, the multiple-marker association was scanned
based on the elastic-net regularization. The proposed approach was applied to the rheumatoid
arthritis (RA) case-control data set of Genetic Analysis Workshop 16. While the selected SNPs at
the screening step are located mostly on chromosome 6, the elastic-net approach identified
putative RA-related SNPs on other chromosomes in an increased proportion. For some of those
putative RA-related SNPs, we identified the interactions with sex, a well known factor affecting RA
susceptibility.

Background
Recently, genome-wide association studies (GWAS) have
become a promising new tool for deciphering the gene-
tics of complex diseases, which are usually polygenic and
affected by gene-by-environmental interactions. Because

it can be more powerful to scan multiple markers jointly
in detecting disease-related genes, various multiple-
marker approaches have been or can be used in GWAS
[1-4]. Examples include logic regressions [2] and
classification and regression trees [3]. Due to their

Page 1 of 6
(page number not for citation purposes)

BioMed Central

Open Access

mailto:sacho71@snu.ac.kr
mailto:kimhaseong@gmail.com
mailto:oh.sohee@gmail.com
mailto:kyunga.j.kim@gmail.com
mailto:tspark@stats.snu.ac.kr
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


sequential selection processes, these methods may miss
the overall correlation structure of the genes. Another
example is random forest [4], based on which true
disease-causing genes can be hidden due to other genes;
the identification result may not be robust.

In this study, we propose a simple stepwise procedure that
employs the elastic-net regularization-based approach [5]
to take the overall correlation structure of single-nucleo-
tide polymorphisms (SNPs) into account when selecting
disease-causing genes automatically in GWAS. Because
the elastic net imposes on a combination of lasso and
ridge penalties [6,7], it provides a more reproducible
prediction than using multiple regression, especially
when there are highly correlated predictors (e.g., SNPs
in high linkage disequilibrium). Our approach consists of
two main steps, called the screen step and the elastic-net
step. At the screen step, we eliminate most of noise SNPs
via single-marker association tests, and select the largest
number of candidate SNPs that can be analyzed by the
elastic-net approach at the next step. At the elastic-net
step, putative disease-causing SNPs are jointly identified
based on multiple logistic regressions with the screened
SNPs via the elastic net. Interactions between SNP and
non-genotypic factor (e.g., sex) can also be examined.

The proposed approach was applied to the rheumatoid
arthritis (RA) case-control dataset of Genetic Analysis
Workshop 16 (GAW16). RA is a complex disease with a
moderately strong genetic component. It is generally
known that females are at a higher risk than males and
the mean onset of disease is in the fifth decade. Many
studies have implicated the HLA region on chromosome
6p21, with consistent evidence for several DR alleles
contributing to risk [8]. Among the non-HLA loci,
PTPN22 on chromosome 1p13, a gene coding for
protein tyrosine non-receptor22, is considered as a
strong candidate RA-susceptibility gene [9]. Recently, a
functional SNP in this PTPN22 gene was reported to be
associated with RA [10]. There remains much to learn
about the genetic susceptibility for RA, including
possible gene-by-environmental interactions.

Methods
Genotype data and sample
The RA data from GAW16 included 545,080 SNPs
genotyped by Illumina (550 k chip) along with
covariates for 908 cases and 1260 controls. We adjusted
population stratification using the computer program
Eigenstrat [11] by excluding 20 outliers from the
samples. Also, the samples showing sex matching error
were filtered [12]. We excluded SNPs with >10%
missing genotype, with minor allele frequencies <5%,
and/or with p < 0.001 from Hardy-Weinberg

equilibrium tests. As a result, 474,499 SNPs passed
our quality control filters and were used in the proposed
stepwise analyses.

Step 1: Screening SNPs via single-marker association tests
For each single SNP, the disease association is tested
using the following logistic regression model adjusted by
sex, under the additive mode of inheritance:

log ( ) ,it π β β β= + +0 1 2SEX SNPi (1)

where π represents the probability of getting the disease.
Among the SNPs showing the strongest associations, we
select the largest number of SNPs that can be analyzed
in the penalized logistic regression via the elastic net at
the next step. This screening step is needed to address
the computational limitation when applying the pena-
lized logistic regression via the elastic net to multiple
SNPs.

Step 2: Penalized logistic regression models via
the elastic net
In this step, putative disease-causing SNPs are identified
via elastic-net-based variable selection. The elastic-net
method is particularly useful when the number of highly
correlated predictor variables (p) is much larger than the
sample size (N). The elastic-net regularization approach
solves the following problem:
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The elastic-net penalty creates a useful a compromise
between the ridge-regression penalty (a = 0) [9] and the
lasso penalty (a = 1) [10]. The elastic net with a = 1 - ε
for some small ε > 0 performs much like the lasso, but is
robust to extreme correlations among predictor vari-
ables. Moreover, the elastic net does both shrinkage and
automatic variable selection simultaneously. The choice
of the regularization parameter (l) is critical to selecting
important variables with accurate estimation. Tuning
parameters a and l are usually selected to minimize
mean-squared prediction error based on cross-valida-
tions (e.g., 5-fold).

Because the effect of genotype variations (i.e., SNPs) on
disease status can be modified by other factors (in our
study, sex), we consider the following multiple logistic

BMC Proceedings 2009, 3(Suppl 7):S25 http://www.biomedcentral.com/1753-6561/3/S7/S25

Page 2 of 6
(page number not for citation purposes)



regression models to examine the SNP main effects (M1)
and also interaction effects of SNPs with sex (M2).

logit( )π β β β= + +
=
∑0 1 2
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where π represents the probability of getting the disease.
When M1 is used with the elastic-net penalties, the SEX
variable is not penalized to adjust the sex effect in
selecting SNP main effects. Note that main effect terms
of both SEX and SNPs are not penalized when examining
the SNP-by-sex interactions in M2. In this study, we use a
library ‘glmnet’ in R statistical package http://www.
r-project.org to conduct the penalized logistic regressions
via the elastic-net.

Results
Single-marker associations
The single-marker association test was conducted for
each SNP, and 48,336 SNPs showed p-values below 0.05
(Figure 1). Some SNPs are in HLA-DRB1 and PTPN22,
which were already known to be RA-susceptibility genes
[8-10]. Among the 48,336 SNPs, we chose the top 1000,
2000, and 3000 significant SNPs for Step 2.

Main effect analysis via elastic-net (M1)
We applied the model M1 via the elastic net to top 1000,
2000, and 3000 SNPs selected at the first step. Among
top 1000 SNPs, 250 SNPs were identified with main
effects as putative RA-related SNPs while 360 SNPs were
detected among the top 2000 and 398 SNPs among the
top 3000. Those with the ten largest main effects are
listed in Table 1. The resulting putative RA-related SNPs
are displayed across the whole genome in Figure 1.
Across the screening choices, 81 SNPs were commonly
selected. Among those SNPs, 23 SNPs were identified
also from single-marker association analyses after 5%
Bonferroni multiplicity correction, and (except three
SNPs) are located on chromosome 6. For examples,
rs2395175 and rs660895 in HLA-DRB1 and HLA-DRA
on chromosome 6 had p-values of 1.08 × 10-87 and 7.16 ×
10-90, respectively, from single-marker association test.
However, 58 overlapping SNPs that were not identified
from single-marker association analyses were found on
various chromosomes. Some SNPs are located on known
genes, such as AMFR, ANKRD35, ECT2, TARBP1, ZFP92,
and ZFPM2. For instance, rs2440468 is located in AMFR
(autocrine motility factor receptor) gene on chromo-
some 16. AMF secretion and receptor levels are closely
related to RA as well as tumor malignancy [13]. Note
that RA-susceptibility odds ratios (ORs) of AG and GG
against AA were 0.78 and 0.57, respectively, for this SNP.
However, rs2440468 had a p-value = 5.74 × 10-5 for single-
marker association test. While the evidence for single-
marker based association at chromosome 6 with RA has
been previously identified by numerous studies [1], our

Figure 1
Genome-wide scan for RA-SNP association. The p-values < 0.05 from single SNP association tests were plotted in
-log10 scale against chromosomal positions of the corresponding 48,366 SNPs. Blue and light blue were used to distinguish
chromosomes. Red indicates potential RA-related SNPs that were identified by fitting the penalized logistic regression
model (M1) via elastic-net using top 3000 of those 48,366 SNPs.
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results indicate that putative RA-related SNPs were also
distributed across several other regions outside of the
chromosome 6 (Figure 2).

Interaction analysis with sex via elastic-net (M2)
To investigate SNPs with effects on RA-susceptibility that
varied across sexes, we performed interaction analysis
(M2) with the putative RA-related SNPs from M1 for
each screening choice (i.e., top 1000, 2000, and 3000).
We identified 71 SNPs and 132 SNPs with the SNP-by-
sex interaction for each choice of top 1000 and top 2000,
while 105 SNPs showed interactions for top 3000 choice.
Those with five largest interactions effects are summar-
ized in Table 2. For each sex, we investigated RA-
susceptibility OR of each genotype against major-allele
homozygote. For example, rs2044750 showed hetero-
zygote OR of 1.12 and 1.71 for female and male,
respectively. The OR for AA is 1.37 for female and 2.37
for male. This SNP is located in nuclear factor of
activated T cell 1 (NFATc1), a transcription factor on

chromosome 18, which has recently been shown to be
related to osteoporosis, bone metastasis, and rheuma-
toid arthritis [14]. Note that rs2044750 showed a non-
small p-value of 0.00041 at single-marker association
test. Note that ten SNPs overlapped across the screening
choices. Out of ten SNPs, we found six SNPs in known
genes, such as C19orf2, CUGBP2, ECT2, TBC1D8, and
WNT3.

Discussion
We have proposed a simple stepwise approach that
employs the multiple logistic regression model with the
elastic-net penalties to detect disease-causing genes
across a whole genome in GWAS. The elastic-net method
using both lasso and ridge penalties has several
advantages in identifying disease-causing SNPs jointly
in GWAS. First, automatic variable selection and
continuous shrinkage can be simultaneously performed.
Second, it can select groups of many highly correlated
SNPs, which may cause a multicollinearity problem in
classical multiple linear regressions. Third, the shrinkage
feature of the elastic net enables us to include all the
interaction terms between SNPs and non-genotypic
factors as well as SNP main effects into a model. Also,
rather than searching for potential SNPs along the entire
chromosome directly, our approach provides an efficient
search by using a multi-step procedure to handle the
extremely large number of potential SNP patterns in
GWAS.

Although most putative RA-related SNPs were found in
chromosome 6, we also identified additional suscept-
ibility genes in other chromosomes. Our findings need
to be replicated in an independent dataset or to be
functionally validated in the future in order to declare
the biological significance. There is disagreement in
results across the screening choices. There are possible
causes that result in this discrepancy. First, the missing
data caused large differences in the results. We removed
some samples and SNPs to make datasets complete
because the elastic-net regression method we employed
does not allow for missing data. So the three datasets
according to the screening choices ended up with
different sample sizes. The difference in sample size
was large in the previous analysis, and we tried to make
the sample sizes similar in the updated analysis. Even
though the previous analysis had a similar sample size,
there are about only 70% overlapping samples, as
shown below. This explains why we had more common
SNPs in the updated results. This missing data problem
would be avoided by using a proper imputation
method for missing data. Second, depending on the
correlation structures among SNPs, the elastic-net
regression method may provide different results because

Table 1: RA-related SNPs identified with ten largest main effects
via the elastic-net method (M1)

SNP Chromosomea Coefficientb

Top 1000
rs6903608 6 -0.3413
rs2395185 6 0.3285
rs11686264 2 -0.3284
rs6981223 8 -0.31
rs10948693 6 -0.2813
rs9727917 1 -0.2806
rs2440468 16 -0.2736
rs4499874 5 0.2714
rs9275595 6 0.2641
rs7970893 12 -0.2492

Top 2000
rs2395175 6 0.2522
rs6903608 6 -0.2299
rs10094729 8 -0.166
rs2101613 10 -0.1613
rs6910071 6 0.1529
rs660895 6 0.1522
rs9277554 6 -0.1468
rs12203592 6 -0.1401
rs2578240 9 0.1356
rs9275572 6 -0.1353

Top 3000
rs2395175 6 0.3532
rs660895 6 0.2302
rs9275572 6 -0.219
rs10094729 8 -0.1972
rs6903608 6 -0.1889
rs3873444 6 -0.1403
rs7970893 12 -0.1321
rs234592 14 -0.1316
rs10789176 1 -0.125
rs9275601 6 -0.1221

aChromosome where SNP is located.
bCoefficient representing size and direction of SNP main effect.
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it considers the correlation structure when selecting
variables.
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