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Abstract

Problems associated with medication use and the consequent effects on genome-wide association
analyses were explored using the Genetic Analysis Workshop 16 Problem 3 data. Lipid phenotypes
were simulated in the Framingham Heart Study using several measured variables including causal
genes (based on a 500 k SNP panel), smoking, dietary intake, and medication usage. We report a
sensitivity analysis of how medication use (which artificially alters lipid values) affects association
inferences. Associations were performed for LDL-c under seven different correction schemes:
1) ignore medication use entirely (no correction) and adjust for covariates; 2) delete medicated
subjects then adjust for covariates; 3) include medication use (Yes/No) as a covariate during
covariate adjustments; 4) correct raw values using clinical trials information then adjust for
covariates; 5) correct raw values using the actual simulation protocol (“truth”) then adjust for
covariates; and 6-7) over-corrections (add arbitrary values) then adjust for covariates. Results
indicate that failure to properly correct for medication usage can profoundly affect the heritability,
and hence the association results. The empirical results yielded one genome-wide significant locus
on chromosome 22 (RS2294207), consistent with the simulation protocol. This signal was detected
under all schemes that corrected the raw values (clinical trials, simulation protocol, or over
corrections), but was not detected under the first three adjustment schemes (ignore medication
use, delete medicated individuals, use medication status as covariate). In summary, we confirm that
failure to properly account for medication usage can have a profound impact on genetic
associations.
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Background
In addition to the multiple technical challenges in
analyzing genome-wide association (GWA) data, there
remain some basic questions about how to properly
derive the phenotype when measured traits are artificial
for some (but not all) individuals, e.g., due to medica-
tion use. How should adjustments for such confounders
be performed? For age, which is known to inflate the
resemblance among family members, the general proce-
dure is to remove the effect using a regression procedure
and retain the residual. However, medication is a
different kind of confounder that artificially alters trait
values, but only in treated individuals. One could
consider drug use (e.g., yes/no) similar to age by using
it as a covariate in the regression procedure. This
minimizes mean differences in lipid levels between
users and non-users but does not recover the original
(unmedicated) values. In the context of linkage studies,
Cui et al. [1] showed that either ignoring the fact that
some individuals were medicated or excluding them led
to a reduced ability to detect genetic effects. Epstein et al.
[2] considered this to be a data censoring problem. Their
variance-components linkage model was based on the
regression method of Tobin [3] for analysis of censored
normal data under the assumption of independent
observations. Basically, it allowed for latent values to
be more extreme than observed. Analysis of simulated
data that had been corrected using the censoring model
led to unbiased parameter estimates and improved type I
error rates. However, failure to correct for censoring led
to underestimates of the mean effects (in this case the
genetic effects). This suggests that simply adding an
appropriate constant to treated (censored) data is
appropriate (see linkage studies [1,4-6]). To address
these concerns in the context of association studies, we
analyzed simulated lipid data (the “truth” is known) in
which some subjects were medicated and others were
not. In particular, this investigation looks at the
sensitivity of alternative methods of medication correc-
tion and their impacts on association results.

Methods
Study design and simulation of data
We used the Genetic Analysis Workshop (GAW) 16
Problem 3 simulated data, which is based on the
Framingham Heart Study. Lipid data were simulated
under a model that used the actual pedigree structures
and sample sizes of the Framingham data (6,476
subjects in 942 pedigrees distributed among three
generations) across three time points that were 10
years apart. During pedigree construction the family
members’ relative ages were calculated at a given exam,
and then ages were assigned for everyone at three fixed,
10-year intervals. There was no drop-out and no missing
data.

Genotypes were derived from the Affymatrix GeneChip®
Human Mapping 500 k Array Set (approximately
550,000 SNPs). While the real marker data was used,
lipid phenotypes were simulated under a model with
known major genes and polygenes, as documented in
Kraja et al. in this issue [7]. In this report, we concentrate
on low-density lipoprotein-cholesterol (LDL-c), which is
the trait that had the largest medication effect. LDL-c was
influenced by six major genes with locus-specific
heritabilities ranging from 1% to 0.1%. The polygenic
heritability was 52% (1,000 genes), and the polygenic
and locus-specific effects together accounted for 55% of
the variation. Medication (yes/no) effects were modeled
as a pharmacodynamic process. When simulated lipid
values were checked, individuals in the upper tail of the
distribution (2% at Visit 1 and 15% at Visit 3) were
classified “medicated” and responders were assigned a
30% decrease in values. Smoking and diet also had
effects on the simulated traits.

Data adjustments
Our analysis plan consisted of seven different correction
schemes (see Table 1). Scheme 1: we ignored the fact that
some of the individuals were medicated. Scheme 2: we
recognized that lipid values were artificial for medicated
subjects by assigning their trait values to be missing.
Scheme 3: medication use was treated as a binary
covariate (yes/no) during covariate adjustments (see
below). For the remaining schemes (4-7) we applied a
correction to the raw data to try to recover the values that
would have been seen if there had not been any lipid-
lowering drugs. Scheme 4 (clinical trials): involved a
correction for the effects of HMG-CoA reductase inhibi-
tors (statins) as outlined in the study by Wu et al. [6].
Wu et al. [6] derived correction factors by using the data
from 32 clinical trials (with over 19,000 participants)
that looked at long-term effects (greater than 8 weeks) of
anti-hyperlipidemic medications. Weighted-average abso-
lute changes in lipid values were calculated by medication
and ethnic groups. In the current investigation, the correction
simply involved adding the tabled value to the reported
LDL-c trait values (X + 48.1 mg/dl). Scheme 5 (“truth”): was
based on the protocol used in the data simulations [7].
Because an individual’s original value was reduced by 30%
to create the medicated responder value, we reversed
the adjustment as shown in Table 1 [Y = X/(1-0.3)].
Schemes 6 and 7: we applied two over-adjustments by
adding arbitrary constants (X + 75 mg/dl for Scheme 6 and
X + 100 mg/dl for Scheme 7).

Each of the (raw or corrected) LDL-c traits was then
adjusted for several covariates using a stepwise regression
method. The covariates included a polynomial in age
(age, age2, age3, age4, age5, and age6), smoking (yes/no),
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and diet (intake per day). Additionally, medication use
(yes/no) was a covariate for Scheme 3. In summary, a
given measure was regressed on these covariates,
separately in males and females, using in a stepwise
procedure. Only significant terms (5%) were retained to
compute the residual from this regression. The residual
was standardized to a mean of zero and a variance of
one. The entire correction and adjustment procedure was
carried out separately for each of Visits 1 and 3 data,
leading to seven Visit 1 and seven Visit 3 variables, as
outlined in Table 1.

Association analysis
Variance-components models as parameterized in the
computer programs QTDT [8] and Merlin [9] were used
to perform heritability and association analyses. Both
were maximum likelihood procedures estimating para-
meters under two contrasting models, with the difference
in (minus twice) the likelihoods being distributed as a c2

based on 1 degree of freedom. For heritability, a model
with only residual environmental (e) effects is compared
to another having both the environmental and a
polygenic heritability (e + g) component. The likelihood
comparison tests the null hypothesis that the heritability
is zero. The association analysis is equivalent to a non-
TDT family-based method that contrasts the environ-
mental plus polygenic model (e + g) with one in which
the environmental, polygenic and association compo-
nent is included (e + g + a). The comparison tests the
hypothesis that the association component is zero.

Results
For covariate adjustments, age was the primary predictor,
accounting for up to 10% of the variability. Additional
covariates of smoking and diet did not substantially alter
the estimates.

Heritabilities are in Table 1. There is a trend for the
heritabilities to be larger with more appropriate medica-
tion correction. At Visit 3, the heritability goes from 25%
for no correction to ~50% when the “true” correction is

applied. There is little difference across adjustments for
Visit 1. The Visit 3 association results for the first three
adjustments (top row of Figure 1) show no genome-wide
significant associations, but for the remaining adjust-
ments (bottom row), there was a cluster of results at
marker SNP_A-1908298 (RS2294207). The locus-speci-
fic heritability at RS2294207 is shown in each panel of
Figure 1 (ranging from about 0.5% to over 1.5%). Based
on the answers [7], this is the marker simulated to have
the largest effect.

Discussion
The purpose of this study was to perform a sensitivity
analysis to determine how medication use, or rather how
we adjust for medication use, affects genetic inferences in
association analyses when the “true” answer is known.
As expected, our results confirm that appropriate
adjustments provide more accurate results. However,
an important message is that some commonly used
methods to correct for treatment may yield misleading
results.

The “true” results were derived by pre-correcting the raw
LDL-c values using the simulation protocol and then
performing typical covariate adjustments. A series of
analyses were performed under a variety of correction
scenarios and compared to the truth. As expected,
ignoring medication (Scheme 1) use biased the results
for Visit 3 data (heritability was half of the true value of
about 50%). However, two commonly used adjustment
methods also were biased (Scheme 2, dropping medi-
cated subjects or Scheme 3, treating medication use as a
binomial covariate). While both of these methods
slightly improved the signals as compared with doing
nothing (heritabilities increased from 25% to ~30%)
they did not yield “true” results. And, in fact, the
association signal was completely missed under all three
of these schemes. Removing medicated individuals
decreases both the sample size and the power, but
even more importantly these are the very individuals
who provide the best evidence for genetic effects - the

Table 1: Analysis variables, corrections and total heritabilities

LDL-c Heritabilities

Scheme Method of adjustment Correction Visit 1 Visit 3

1 No correction, ignore medication status None 43.8% 25.2%
2 No correction, assign medicated values as missing None 44.3% 33.5%
3 No correction, treat medication (Y/N) as covariate (Covariate) 43.6% 30.1%
4 Use clinical trials data to correct LDLa X + 48.1 mg/dl 46.6% 47.9%
5 Use GAW16 simulation protocol to correct LDLb X/(1 - 0.3) 46.6% 50.1%
6 Over-correct LDL (1) X + 75 mg/dl 46.6% 50.0%
7 Over-correct LDL (2) X + 100 mg/dl 45.7% 48.5%

aSee Wu et al. [6] for details.
bOriginal values were reduced by 30% [X = Y - 0.3(Y)].

BMC Proceedings 2009, 3(Suppl 7):S52 http://www.biomedcentral.com/1753-6561/3/S7/S52

Page 3 of 5
(page number not for citation purposes)



original upper tail! The alternative method that used
medication as a binomial covariate (Scheme 3) assumes
that the original unmedicated values of both the treated
and untreated groups are similar. However, this is not
the case (in the simulation or in real life) because only
those individuals with sufficiently high original values
are treated. In other words, this method tries to equalize
the means across treated and untreated groups, when in
fact the means by definition cannot be the same.

For the remaining schemes we found that any of the
methods that attempted to recover the original
(untreated) levels prior to covariate adjustment worked
fairly well in terms of finding the “true” answer. In this
dataset, the clinical trials method (Scheme 4) yielded a
slight under-adjustment, while adding arbitrary values of
75 mg/dl (Scheme 6) or 100 mg/dl (Scheme 7) led to
slight over-adjustments, as shown in the magnitudes of
the heritabilities and the association signals. This
strongly suggests that independent data such as that
from the clinical trials literature can be used to provide

correction factors that, while they are not exact, seem to
be close enough to recover signals that otherwise would
have been missed. However, in some situations more
accurate approaches may be required. For example,
information on not only the mean (as used here) but
also on the variation is available in the clinical trials
literature which could be used to account for individual
variation in treatment effectiveness. In addition to genes,
“environmental” factors such as compliance levels or
longitudinal information about treatment also may
influence individual variation. Although beyond the
scope of the current study, all of this information could
be incorporated using a mixed effects model, through
multiple imputation, or through a regression that takes
into account censored information such as the Tobit
model (see [2,3]).

In the last two to three years, GWA studies have been
making great strides in identifying common polymorph-
isms associated with disease risk. For example, over 50
novel loci have now been detected that modify the risk

Figure 1
Association results for Visit 3 LDL on chromosome 22. Within each panel the vertical axis is -log10(p) for the
association test and the horizontal axis represents the SNP markers (numbered sequentially). Panels on the top row (left to
right) are ignore medication use, delete medicated subjects, and medication (Y/N) covariate. Panels on the bottom row are
(left to right) corrections based on clinical trials data, the simulation procedure, and an over-correction. The dotted reference
line represents the “true” -log(p) at the disease locus (RS2294207), with locus-specific heritabilities at the disease locus shown
in each panel.
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for type 2 diabetes and cardiovascular disease [10] and
over 20 new loci have been implicated in breast cancer
[11]. However, each of these loci accounts for only a very
small percent of the variance, typically much less than
1%, with the sum of all of loci still not accounting for all
of the known genetic variance [12,13]. Consequently, a
major problem that we face today is to identify and
locate this “missing heritability”. Currently, researchers
are marshalling their efforts toward this end using a
variety of tools, technologies, and methods. For example,
large samples are being created through cooperative
agreements among smaller studies (e.g., the CARe and
CHARGE consortia) in order to increase power. Others
are integrating gene expression data, or extending GWA
studies, to look at non-traditional markers such as copy-
number variations. Certainly, these are good places to
start looking. However, attention to the phenotype itself
should not be neglected. As the current study shows,
treatment acts as noise that overpowers the small signals
produced by individual loci and prevents their detection.
We have shown that how one corrects for this
confounding factor can be crucial.

Conclusion
In summary, these results show that medication use can
have a significant effect on genetic analysis. Careful
consideration in how one corrects for treatment is
important in the case of association studies in which
very small effects are expected as compared to the
relatively large degree of noise that is produced when
values are modified due to treatment effects.
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