BIVIC Proceedings st

Proceeding

Genome-wide association study for empirically derived metabolic
phenotypes in the Framingham Heart Study offspring cohort
Marsha Wilcox*™, Qingqin Li'?, Yu Sun?, Paul Stang', Jesse Berlin'

and Dai Wang’

Addresses: 'Epidemiology, Johnson & Johnson Pharmaceutical Research and Development, LLC, 1125 Trenton-Harbourton Road, PO Box 200,
M/S K304, Titusville, New Jersey 08560 USA and 2Pharmacogenomics, Johnson & Johnson Pharmaceutical Research and Development, LLC,
Raritan, New Jersey 08869 USA

E-mail: Marsha Wilcox* - mwilcox@its.jnj.com; Qingqin Li - qli2@its.jnj.com; Yu Sun - ysun25@its.jnj.com; Paul Stang - pstang@its.jnj.com;
Jesse Berlin - jberlin@its.jnj.com; Dai Wang - dwang39 @its.jnj.com

*Corresponding author tEqual contributors

from Genetic Analysis Workshop 16
St Louis, MO, USA 17-20 September 2009

Published: 15 December 2009
BMC Proceedings 2009, 3(Suppl 7):S53  doi: 10.1186/1753-6561-3-S7-S53

This article is available from: http://www.biomedcentral.com/1753-6561/3/S7/S53

© 2009 Wilcox et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We used data reduction and clustering methods to identify five phenotypically homogeneous
groups of study participants with similar profiles for cardiovascular disease risk factors. We
constructed both qualitative (binary subgroup membership) and quantitative traits (probability of
subgroup membership) for each individual. The Cluster | comprised individuals who were
generally healthy and had some history of smoking. Cluster 2 was dropped from the analyses due to
the preponderance of missing data. Cluster 3 was used as the control group, healthy non-smokers.
Members of Cluster 4 had features of the metabolic syndrome and were generally not as obese as
Cluster 5. Obesity was the hallmark of Cluster 5, the members of which also had some features of
the metabolic syndrome.

We then examined the genetic associations with both qualitative and quantitative representations
of these empirically derived traits. Genetic analyses of the qualitative traits were conducted,
comparing each of the affected groups with the unaffected cluster alone and, to increase statistical
power, the unaffected group and healthy smokers combined. One single-nucleotide polymorphism
on chromosome 4 met a conservative genome-wide significance level, but the effect was muted
when we accounted for population stratification. The results for the quantitative traits were
similar, with a small number of genome-wide significant findings muted by control for admixture.
The directional findings will provide the basis for hypothesis generation for syndromes such as the
metabolic syndrome and obesity.
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Background

The identification of subtypes of disease using data
reduction and clustering methods has been helpful for
identifying genetic associations in schizophrenia, rheu-
matoid arthritis, and other disorders [1-3].

The Framingham Heart Study (FHS) is an ongoing
longitudinal study focusing on the development of
coronary heart disease and associated risk factors in
Framingham, MA. The long history of research con-
ducted in Framingham has contributed to the contem-
porary understanding of cardiovascular and related
diseases. One advantage of this study is that the
ascertainment criteria do not require disease at the
time of study entry. In addition, this is a random sample
of households and not restricted to those seeking
healthcare for any specific complaint.

Our analyses of the data made available to participants
in the Genetic Analysis Workshop (GAW) 16 were
restricted to members of the Offspring Cohort because
some measures of metabolic function were not available
in the Original Cohort and were not available for more
than one measurement period in the Generation 3
Cohort.

The objectives of this study were 1) to identify subgroups
of study participants with similar phenotypic character-
istics (or syndromes) including patterns across measure-
ments at multiple visits, and 2) to construct qualitative
and quantitative representations of the new phenotypic
subgroups, and 3) to conduct genome-wide association
analyses of the quantitative traits; and for qualitative
traits, to compare the newly identified affected pheno-
typic groups with unaffected controls.

Methods

Phenotypic data

We created categorical variables using the Centers for
Disease Control (CDC) definitions for each of the
following for each exam: body mass index (BMIL;
underweight, normal weight, overweight, or obese),
high cholesterol (measured or on lipid lowering medica-
tion), low high-density lipoprotein (HDL), high trigly-
cerides, and hypertension (measured or on medication)
[4]. These variables, along with categorical representa-
tions of smoking (current, ever, never), diabetes (yes,
no), treatment for hypertension, treatment for high
cholesterol, and heart disease (yes, no), were the basis
for the data reduction and clustering.

Phenotype definitions
The strategy for the development of qualitative traits
included nonparametric data reduction, iterative two-

http://www.biomedcentral.com/1753-6561/3/S7/S53

staged clustering on the observed dimensions, and the
assignment of binary membership in each cluster for
each individual. Quantitative traits (probability of
cluster membership) were estimated using logistic
regression with cluster membership as the outcome
and all variables used for clustering as predictor variables
in the models.

We used multiple-correspondence analysis (MCA) for
data reduction instead of the more traditional principal-
components analysis (PCA). PCA is a method com-
monly used for data reduction. These data did not meet
the distributional assumptions for a Pearson correlation,
the basis for PCA. A similar method designed for use
with categorical data was employed. MCA is a nonpara-
metric data reduction method free of the assumptions
underlying PCA and was developed for qualitative data.
The objective of MCA is to identify a low-dimensional
subspace that comes closest to all of the data points. It is
analogous to graphing the results of a factor analysis in a
multidimensional euclidean space. However, the space
identified in MCA is not euclidian. The coordinates of
each individual in the identified multi-dimensional
space served as the basis for the identification of
subgroups or clusters [5].

Each study participant with phenotype data on two or
more visits was assigned a score on each of the 22
dimensions retained based upon the eigenvalues (data
not shown). Next, a multi-staged clustering strategy was
used to identify distinct subgroups [6]. It is not unusual
for groups identified with clustering techniques to be
subject to the idiosyncrasies of the estimation data set. In
an attempt to mitigate that difficulty, we first conducted
repeated k-means clustering with different random
cluster seeds and used a larger k (number of clusters)
than we expected in the data. Groups that consistently
clustered together across all of the initial analyses were
identified as intact clusters. An agglomerative hierarch-
ical clustering algorithm was then implemented using
the intact clusters and the remaining individuals in the
sample. An examination of the change in Ward’s
aggregation criterion and the nature of the groups was
used to choose the final cluster structure [5,6]. SPAD
software [7] was used for both the MCA and the
clustering algorithms. SAS software [8] was used to
compute quantitative traits and for subgroup compar-
isons.

Genotype data preparation

There were 6,848 individuals with genotype data from
Affymetrix 500 k platform (500,568 single-nucleotide
polymophisms (SNPs)). Quality control for the geno-
type data was conducted at both subject and SNP level.
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At the subject level, we retained subjects with call rates
greater than 0.90. Sex discrepancies were evaluated using
the heterozygosity rate of X-chromosome SNPs and
comparing with the phenotype data. Only subjects from
the second generation were kept, and one subject from
each pair of family members or cryptic relatedness was
retained in the subsequent analysis. At the SNP level, we
retained SNPs with a call rate greater than 0.90, a minor
allele frequency of at least 0.01, and Hardy-Weinberg
equilibrium p-value greater than 9.99 x 10°® (i.e., 0.05/
(no. of SNPs tested)). We also excluded SNPs that could
not be mapped to reference genome assembly. After data
quality control, there were 1,754 subjects and 418,411
SNPs retained in the final dataset.

PCA

PCA was used to examine population stratification. This
analysis was performed using EIGENSOFT 2.0 [9,10].
Theoretically, the leading principal component should
reflect population structure. We noticed that some of the
leading axes appeared to be dominated by a set of
markers in a very small region that showed extended
linkage disequilibrium. To deal with this problem, we
applied a modified version of the PCA as described by
Fellay et al. [11]. The method we used is described in
detail by Wang et al. [12].

PCA was performed in each of the analysis sets separately
to derive significant principal components that repre-
sented the population structure in the analysis set.
Population stratification (admixture) was controlled in
subsequent analyses by including the final set of 18
significant components as covariates.

Genome-wide association (GWA) analyses

GWA analyses were performed using PLINK 1.03 [13].
An additive genetic model was assumed for all GWA
analyses. Each of the newly derived affected subgroups
was compared with the identified control group sepa-
rately using allelic chi-square tests in the absence of
principal-component adjustment and logistic regression,
including significant principal components derived
above as covariates to control for admixture. A threshold
of 42 x 107 was used for genome-wide significance
based on a Bayesian formula as described by Lencz et al.
[14].

Results

Phenotypes

Among the 2,760 study participants in the Offspring
Cohort, five clusters were identified. Cluster 1 comprised
individuals who were generally healthy and had some
history (current or past) of smoking (n = 949, 34.4% [of
the sample]). Cluster 2 (n = 365, 13.2%) comprised
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individuals who were missing information on two or
more measurements. This group was omitted from the
genetic analyses. Cluster 3 comprised healthy non-
smokers (n = 597, 21.6%). This group served as the
control group in our genetic association studies. Cluster
4 (n =376, 13.6%) comprised individuals with features
of the metabolic syndrome (MS) who were generally not
obese (using the Centers for Disease Control definition
of BMI of 30 or greater [14]). Obesity was the hallmark
of the Cluster 5 (n = 473, 17.1%), the members of which
also had some features of the MS. MS, as identified by
the National Cholesterol Education Program’s Adult
Treatment Panel 111, is a clustering of risk factors that can
lead to cardiovascular disease (CVD). The risk factors
include: abdominal obesity, atherogenic dyslipidemia,
raised blood pressure, insulin resistance with or without
glucose intolerance, proinflammatory state, and pro-
thrombotic state [15].

The distributions of sex, age, diabetes ever and myocar-
dial infarction ever are as follows (% female, average age
at visit 1, % diabetes, % myocardial infarction): healthy
smokers (60.0%, 32.8, 2.6%, 2.2%); healthy controls
(59.5%, 32.9, 2.2%, 1.7%); MS (61.1%, 39.5, 28.2%,
25.2%); obese (42.7%, 39.7, 24.5%, 7.4%). By Visit 7,
nearly 90% of the MS group was on treatment for
hypertension. The same was true for 45% of the Obese
group, as well as 12% of the healthy smokers and 18% of
the controls. Figure 1 shows descriptive statistics for the
phenotypic groups across visits available for this study.

Genome-wide association

We compared the MS and Obese groups with the healthy
control group, and, to increase power (power calcula-
tions not shown), with the healthy control and healthy
smokers combined. We used a fairly conservative
approach to correct population stratification (18 princi-
pal components). Neither of the analyses using the
controls alone revealed SNPs with p-values at or beyond
the genome-wide significance level (data not shown).
There was one genome-wide significant SNP on chromo-
some 4 when we used the larger comparison group.
However, this finding was muted when we accounted for
population stratification.

Figure 2 shows the GWAS results for the quantitative
traits for the two affected groups. As was the case with
the qualitative traits, there were significant findings in a
region on chromosome 4 that were muted when the
analyses accounted for population structure using
principal components estimated for that purpose.

Our analyses of the 50 k chip showed similar results
(data not shown). For the quantitative trait for the MS-
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Cluster-specific phenotypic characteristics across visits.

like group there were five results across the genome with
p <1 x 107; similarly, there were eight for the Obese
group. In both cases the findings were somewhat muted
when we accounted for admixture.

Discussion

We identified five phenotypic clusters using a limited set of
measures pertaining to medical history, metabolic function,
and environmental exposures. One group was omitted due
to missing data. Two groups appeared to be relatively
healthy, one of which was more inclined toward tobacco
use than the other. The remaining two groups were
characterized by elevated measures related to MS and
obesity. Interestingly, those characterized by features of MS
were not as heavy, nor did they gain weight as quickly over
time as did the Obese group. Features associated with MS
were not as prevalent in the group characterized by obesity
as they were in the other affected cluster.

There are several limiting factors in our analyses. We
used a conservative approach for the correction of
population stratification. We also used a somewhat
conservative approach for genome-wide significance

levels. It would be interesting to see these results using
an empirical p-value instead.

Next steps in these analyses will be to use the results for
hypothesis generation and to also examine regions with
suggestive findings for genes that have been implicated
in metabolic disorders and obesity.

Conclusion

We identified distinct clusters of individuals with different
manifestations of metabolic disorders. Genetic association
analyses revealed several regions for further investigation.
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GWAS: quantitative traits for metabolic syndrome and obese groups.
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