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Abstract

Genome-wide association is a powerful tool for the identification of genes that underlie common
diseases. Genome-wide association studies generate billions of genotypes and pose significant
computational challenges for most users including limited computer memory. We applied a
recently developed memory management tool to two analyses of North American Rheumatoid
Arthritis Consortium studies and measured the performance in terms of central processing unit
and memory usage. We conclude that our memory management approach is simple, efficient, and
effective for genome-wide association studies.

Background
Recent successes in genome-wide association studies
(GWAS) revealed that they are a powerful tool for the
identification of genes that underlie common diseases
[1-4]. The dbGaP database has been established to
archive and distribute the data and results of GWAS 5].

GWAS enroll thousands of subjects and each subject is
genotyped for often more than 500,000 single-nucleotide
polymorphism (SNP) markers. As a result, they generate
billions of genotypes. The sheer size of the GWAS data
poses significant computational challenges, including
limited computer memory, for most GWAS investigators.

To use the memory efficiently, each genotype is
commonly stored in a byte of memory space (or other

data types with larger sizes) for coding simplicity. For
example, the genotype data from the Framingham Heart
Study (FHS) (12,461 subjects and 550,000 SNPs) require
more than 6.6 GB of computer memory to perform
simple input and output (I/O) operations using the data.
For a typical case-control GWAS, e.g., the North
American Rheumatoid Arthritis Consortium (NARAC)
studies (2,062 subjects and 550,000 SNPs), the genotype
data still occupy more than 1 GB of memory.

Compared to the excessive memory requirement of the
GWAS analyses, the typical amount of memory installed
in desktop computers is 2 GB or less, which is hardly
enough to perform data analysis for GWAS. Another
limiting factor is the operating system. Most desktop
computers are running on 32-bit operating systems. A
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32-bit operating system is only able to handle up to 4 GB
memory (with the exception of several Linux kernels that
can be recompiled to handle up to 64 GB memory),
which limits the maximum number of memory
addresses. The total 4 GB memory space must be shared
among resources used by system hardware (such as video
memory), the operating system, running software, and
other user programs.

For a single-SNP based analysis (such as the c2 test or the
Armitage’s trend test), this memory shortage issue can be
overcome by sequentially reading and testing each SNP.
However, growing evidence suggests that common
diseases are affected by complex interactions among
different genetic and environmental effects [6,7]. Thus,
developing analysis methods that take into account
potential interactions among SNPs is an area of active
research [8-10]. Furthermore, development of new
methods also entails extensive simulations, for which
the computational problem is far more severe than the
analysis of a real data set. Thus, it is essential to make the
most efficient use of the physical memory in managing
and analyzing GWAS data.

We recently developed a simple and efficient memory
management approach to implementing the data com-
pression, decompression, and updating operations in
constant time for each genotype (manuscript in prepara-
tion). The proposed approach could achieve up to 4:1
compression ratio. In this report, we applied this
approach to the NARAC dataset and measured the
performance in terms of central processing unit (CPU)
and memory usage in NARAC data analyses.

Methods
Computer programs store and access data in random
access memory (RAM), a type of memory that provides
direct access to any byte (1 byte = 8 bits) on the chip.
Therefore, the smallest allocation memory unit for most
programs is a byte, while many data types occupy
multiple bytes. For example, most programming lan-
guages use 4 bytes to store an integer type. In GWA
studies, a diallelic SNP-based genotype has four possible
choices: 0 (AA), 1 (AB), 2 (BB), or 3 (missing). Each
value could be represented by 2 bits, and thus 16
genotypes could be packed into one integer data type
(4 bytes) in Java. The theoretical compression ratio is
4:1, compared with a byte storage scheme (1 byte for
each genotype). The compression, decompression and
updating operations for a specific genotype take a
constant operation time using bit operators.

The memory management approach was tested using the
NARAC dataset (2,062 subjects). The genotypes as well

as names and autosome positions of all 531,689 SNPs
were read into the memory (each row represents the
genotypes of a specific SNP among all subjects) followed
by removal of SNPs with excessive missing data (≥ 0.5)
or Hardy-Weinberg disequilibrium (p ≤ 0.001). We
applied the allelic c2 test (Analysis I) and a haplotype
block identification analysis using the four-gamete rule
described by Wang et al. 11] (Analysis II) on the
remaining SNPs (520,258 in total). To reduce the overall
computational burden, we limited the linkage disequili-
brium (LD) calculation to SNP pairs separated by no
more than 500 k base pairs in Analysis II.

The data compression scheme and the statistical analyses
were implemented in Java (JDK version 1.6.04). To avoid
potential complication in bit shifting operation, 15
instead of 16 genotypes were packed into an integer data
type (theoretical compression ratio 3.75:1) in the current
implementation. The memory usages of the program
were profiled in NetBeans IDE 6.0 (Build 200711261600
with Java HotSpot™ Client VM 10.0-b19), on a computer
equipped with Intel® Pentium® D CPU 3.20 GHz and
4 GB physical memory running on Microsoft Windows
XP Professional Version 2002, Service Pack 2. Because
the NetBeans profiler injected a fair amount of overhead
to the Java runtime, the overhead hindered the accurate
profiling of the CPU time. Consequently, for CPU usage
profiling, we measured the portion of time used in
compression and decompression and compared them to
the overall runtime of the analysis using the Java system
call (System.nanoTime ()).

Results
Comparison of memory usage
As mentioned above, the proposed approach achieves a
theoretical compression ratio of 3.75:1. To measure the
performance of the approach in a real experiment, we
carried out the conventional allelic c2 test on the NARAC
dataset and compared the memory usage of the
compressed version to the conventional byte storage
version when the full data were kept in the memory
(including the storage of the genotype data, name, minor
allele, chromosome position, and c2 statistic for each
SNP). Table 1 illustrates the obvious difference between
the memory requirements of the two implementations.
When the data were compressed, the whole program
utilized 305.0 MB of the memory (with a peak usage of
381.6 MB). In comparison, the memory usage of the
conventional byte storage implementation occupies
1073.7 MB (peaked at 1152.4 MB).

Comparison of CPU usage
CPU processing used on data compression and decom-
pression is an important aspect for memory
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management approaches. We first measured the portion
of processing time used on data compression and
decompression in the allelic c2 test. Table 1 summarizes
the results, which indicate that about 12 seconds (2.4%
of total runtime) and 16 seconds (3.4%) were used to
compress and decompress the whole data (1.1 billion
genotypes), respectively.

The allelic c2 test is a simple statistical test that only
requires one decompression operation for each geno-
type. To better represent the expected time used in a
complicated statistical analysis, we measured CPU usage
in haplotype block identification, which is computa-
tionally straightforward but repeatedly accesses the SNP
data. If the (decompressed) genotypes for all SNPs on a
specific chromosome are in the memory, a single
decompression operation is necessary for a genotype.
However, we consider a situation in which the memory
availability is extremely limited. Under this assumption,
the analysis evokes the decompression operation when-
ever it access genotypes. Table 2 shows that about 11
seconds (1.2%) were needed to compress the data and
169 seconds (17.6%) were used to decompress the data.

Discussion
GWAS have produced landmark successes in identifying
genetic variants for complex diseases. One of the major
challenges for GWAS is the computation implementa-
tion. GWAS involve large amount of data (billions of
genotypes) and impose a huge computation burden,
even for modern computers. One of the immediate
challenges is the memory management for GWAS
databases, especially for prevailing 32-bit operation
systems. In this report, we described a simple approach
to compressing the genome-wide SNP data, which could

achieve a theoretical 4:1 compression ratio compared to
the conventional byte storage implementation. The
proposed approach could compact the full 500 k FHS
data into less than 2 GB of memory and make analysis
possible even on a computer running on a 32-bit
operation system.

The computational cost for the compression and
decompression is small. For a dataset with about 1.1
billion genotypes, it takes between 11 and 16 seconds to
compress/decompress the whole dataset. Because the
runtime for both compression and decompression
operations has a linear relationship to the total number
of genotypes, the expected time for compression/
decompression of the full FHS data (6.6 billion
genotypes) is less than 2 minutes.

The two analyses tested in this report could be
implemented without full data storage in memory,
which avoids the necessity of data compression. None-
theless, methods analyzing interactions among different
genetic regions likely require the full data storage, and
this report shows that a close to 4:1 compression could
be achieved.

It is important to design a proper storage format of
compressed genome-wide SNP data before any analysis.
Generally speaking, the compressed data could be stored
in a two-dimensional array, where each row represents
either genotypes for all SNPs in a subject (one subject per
row) or genotypes for a specific SNP among all subjects
(one SNP per row). There are subtle differences between
the two formats. GWAS data commonly include hun-
dreds of thousands SNPs while the number of subjects is
much smaller (thousands). Therefore, the number of
rows (arrays) is much larger in the “one SNP per row”
format. In such case, four bytes are required to store the
address of a specific array in a 32-bit operation system,
and 2 MB of extra memory is needed for a data with
550,000 SNPs and 2,000 subjects using the “one SNP per
row” format. This difference is even greater in some
computer languages (such as Java). For example, most
Java Virtual Machines use 16 extra bytes to store critical
information for an array, and experiments indicated that
the total memory difference between the two formats is
~10 MB for the NARAC data (result not shown). In most
analyses, this difference could be ignored but when the
memory usage is a primary concern, the “one subject per
row” format would be a better choice. On the other
hand, it is more efficient to decompress a full row
compared to decompression of single genotype at a time.
Consequently, for analyses frequently accessing geno-
types of a SNP among all subjects (such as c2 test), the
“one SNP per row” format will save significant runtime
in decompression operations.

Table 1: Comparison of the heap memory usage for an allelic c2

test of the NARAC data

Heap memory usage (MB)

Data storage Final Peak

Compressed 305.0 381.6
Uncompressed (byte format) 1073.7 1152.4

Table 2: Analysis of CPU usage for compression and decompression

CPU usage (seconds)

Runtime Allelic c2 test Haplotype block identification

Total 479.984 957.854
Compression 11.583 11.196
Decompression 16.422 168.958
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Conclusion
In this study, we validated the effectiveness and
efficiency of our memory management approach for
GWAS. Our results indicate that the proposed algorithm
is useful for the analysis of currently available GWAS
datasets.
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