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Abstract

In this paper, we apply the gradient-boosting machine predictive model to the rheumatoid arthritis
data for predicting the case-control status. QQ-plot suggests severe population stratification. In
univariate genome-wide association studies, a correction factor for ethnicity confounding can be
derived. Here we propose a novel strategy to deal with population stratification in the context of
multivariate predictive modeling. We address the problem by clustering the subjects on the axes of
genetic variations, and building a predictive model separately in each cluster. This allows us to
control ethnicity without explicitly including it in the model, which could marginalize the genetic
signal we are trying to discover. Clustering not only leads to more similar ethnicity groups but also,
as our results show, increases the accuracy of our model when compared to the non-clustered
approach. The highest accuracy is achieved with the model adjusted for population stratification,
when the genetic axes of variation are included among the set of predictors, although this may be
misleading given the confounding effects.

Background for a genetic test. Some machine learning models, such

Predictive modeling of case-control single-nucleotide
polymorphism (SNP) data, using modern statistical
and machine learning methods is a viable alternative
to classical statistical genetic approaches that utilize one-
marker-at-a-time hypothesis testing. With emphasis on
prediction, a well executed modeling strategy can lead to
a generalizable prognostic model that may form a basis

as random forests [1] and gradient boosting machine
(GBM) [2], can also rank covariates (here, SNPs) in terms
of their predictive power. This presents a useful
alternative to univariate testing because the promising
SNPs are identified in the context of a multivariate
predictive model that can discover multi-loci associa-
tions. Further, an unbiased estimate of predictive
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performance of such models also presents a useful
summary of diagnostic value as opposed to a sea of
p-values one obtains from association studies.

Genetic Analysis Workshop 16 Problem 1 dataset is a
case-control study of rheumatoid arthritis (RA) with a
total sample size of 2,062 cases and controls, each
genotyped using Illumina HumanMap 500 k array
interrogating 545,080 SNP markers. Classical analysis
using a one degree of freedom trend test of association
shows a significant p-value inflation with the slope of
1.33 (Figure 1), which indicates significant confounding
is present. Also, p-values obtained by 100,000 permuta-
tions exhibit very similar pattern, suggesting that
asymptotic chi-square test is not the cause. The p-value
inflation is also reported in the original publication [3],
and population stratification is suggested as a cause.

In this paper, we describe results when a dataset with
potential ethnicity complexity is subjected to predictive
analysis using GBM predictive model, and compare the
obtained results to analysis based on original data with
ethnicity complexity.

Methods

We have set aside 33% of the data as a test set (285 cases
and 400 controls) for the final assessment of predictive
performance. The remainder of the data (1,370 subjects),
training data, is split into five folds and is used to
develop and optimize the GBM genetic predictive model
for lifetime risk of developing RA. More precisely, during
the parameter optimization process, the model is trained

-log(p-values)

—log(quantiles)

Figure |
QQ-plot for the original data (inflation factor = 1.335).
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using four folds - called CV-training folds - and is
evaluated on the fifth fold - validation set.

Data preprocessing

We first preprocessed the data for outlier detection, which
resulted in seven controls (D0009324, D0009459,
D0005318, D0011466, D0012257, D0006047, and
D0012446) marked as outliers. We followed the general
description of Plenge et al. [3], i.e., a subject-to-subject
covariance matrix of a set of 120,000 minimally correlated
SNPs is computed, and the four eigenvectors corresponding
to the top four eigenvalues of the covariance matrix are
extracted (a screeplot of eigenvalues was used to decide on
the number of selected eigenvalues). Those subjects whose
respective entry in at least one eigenvector differed from the
mean by more than six standard deviations were removed
from any downstream analysis, and the eigenvectors were
recomputed.

Then the SNPs were preprocessed as follows: 1) SNPs with
less than 1% minor allele frequency were removed;
2) SNPs with less than 5% missing values were replaced
with major alleles, or were excluded from the analysis if
missing values were more than 5%; 3) tag SNPs were
selected with linkage disequilibrium (LD) greater than 0.8
as measured by R* in PLINK 1.03 using the following
option: indep-pairwise 50 10 0.80; and 4) because we are
particularly interested in discovering novel SNPs predicting
the RA risk, we removed SNPs in 6p21 and 8p23 regions.
However, we also present some results with these two
regions included.

At the end of preprocessing step, we were left with 2,055
subjects and 351,660 SNPs per subject. This data was
then divided into training and test sets, and cross-
validation (CV) folds as described above.

SNP selection and cross-validation

The aim of the SNP selection process is to find a subset
of SNPs to include in the predictive model to maximize
its predictive accuracy. The selected SNPs may be
investigated further by bioinformatics methods or low-
throughput assays.

The SNP subsets we considered were based on univariate
p-value thresholds. We used p-value correction procedure
described previously [4] and PLINK software 1.03 [5] to
compute p-values when the four eigenvectors of the
covariance matrix (as explained in the data preprocessing
section) are included in the logistic regression model for
a given SNP. Then, for various p-value thresholds a GBM
model is built using the SNPs below the threshold. This
is done repeatedly within a CV framework as follows.
The four folds of the training set are used as a
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CV-training set. The p-values for the subjects in the four
folds are re-computed at each iteration, and SNPs with
p-values below the threshold are selected. Then, a
clustered GBM model is built, and the value of area
under curve (AUC) of the accuracy of predictive model is
computed on the fifth fold - validation set. The process
is repeated five times, and we report the average AUC.

Model correction for ancestry confounding

The population stratification present in the dataset, which
seems to cause significant p-value inflation, can also be
detrimental to building and validating a multivariate
predictive model. To deal with that, we build separate
predictive models on subsets of the data that are derived by
clustering the subjects using the axis of genetic variation.
Hence, each cluster will have a reduced overall genetic
variability, which is usually assumed to be reducing the
underlying ethnicity differences. Another way to see our
procedure is to think of building predictive models
conditional on certain ethnicity, P(Y|X, T = t). Here Y is
an outcome variable, X, the genetic (SNP) vector, and T'is a
latent ethnicity value, which is assumed to be the same for
all subjects in a cluster. Of course we only have crude
approximations to underlying ethnicities so our condition-
ing on T = ¢ is only an approximation. A more usual way
would be to build a model that is adjusted for ethnicities
by incorporating variable T directly into the model.
However, as we demonstrate in the later section (with an
“adjusted” GBM model), the axis of variation variables are
strong predictors and can easily overshadow true genetic
signal. Further, the predictive performance of such a model
cannot be properly estimated using a dataset with
population stratification present.

Deriving axes of genetic variation

Here we present our approach to deriving the axis of
variation which is equivalent to that presented by Price et
al. [4], but allows us to calculate the eigenvectors of a test
case based on the axis derived on the training set. This is
necessary so that we can obtain unbiased estimates of
prediction error.

In what follows, we denote Xi.i, to be the matrix where
each row contains the SNPs for a subject in the training set.
The test set matrix X, will be defined similarly. The
zygosity of the SNPs is encoded as 0, 1, or 2, indicating the
number of minor alleles. We standardize X, as suggested
by Price et al. [4]. We also standardize X, except that we
use the column means and standard deviations from X4,
for column standardization, and subtract each row of X
using Xs's row means. We then perform singular value
decomposition on X.in:

X train = ubpVv’ ( 1 )
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We cluster the training subjects by performing partition-
ing around medoids (PAM) on the first four column
vectors of U, which will provide us three medoids (m;,
i=1, 2, 3) representing the centroids of the three clusters
in the four-dimensional space.

Next, given the SNP vector for a test subject (a row of
Xiest) Xiesy We calculate:

_ -1
Wiest = XtestVsub Dsub ’

where Vg, contains the first four columns of V from
Eq. (1) and Dygyy, is the 4x4 upper-left sub-matrix of D in
Eq. (1). Then we assign X to one of the three clusters
from the training data using:

Ciege = aAIG mini:l,2,3(| | Wiest — rnedOidi ||)'

where ||.|| is the Euclidean norm. The above is
equivalent to the EigenStrat procedure [4], which obtains
the same matrix U as in Eq. (1). Using singular value
decomposition allows us to project a test set observation
onto the axes of genetic variation of the training data.
Therefore, we can perform the clustering step of model
building using only the training (or CV-training) set, and
to subsequently predict the case status on an unseen data
in the test or validation set.

Hence, all steps of our model building (SNP selection,
clustering, and model training) are performed only on
the training set. This allows us to obtain unbiased
estimated of the predictive performance of our modeling
strategy.

Gradient boosting machine (GBM)

To model P,(Y|X, T = t), we use an ensemble of predictive
models (GBM) that is based on the boosting paradigm
[2]. The basic model unit in GBM is a small decision
tree that allows us to model genetic interaction effects.
Many such trees are combined in what is effectively a
regularized logistic model with trees as individual
covariates.

In our experiments, we utilize the ‘gbm’ package in R,
where we set the interaction depth of each tree to 5,
shrinkage factor to 0.01, bag fraction to 0.8, and the
number of minimum subjects in each node to 10. These
parameters values were picked empirically by examining
the result of a small experiment involving various
parameter settings, but were not formally optimized.
The number of trees in a model should depend on a
sample size and was simply set equal to the number of
subjects in the training set, which varies among clusters.
We also present the results with GBM applied to the
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whole dataset (unclustered) and applied to the whole
dataset augmented with axis of variation variables
(adjusted GBM) using the same parameter settings.

Results

To decide on the number of clusters, we use the average
Silhouette value [6] when clustering the training set into
two, three, and four groups. Our results on the training
set show that the average Silhouette value is higher for
three and four groups, but because since there are as few
as 93 subjects in a four-group split, we set the number of
clusters to three.

We compare the accuracy of GBM using five-fold CV in
the following three scenarios (Figure 2): 1) the average
accuracy of GBM model with no clustering performed to
solve the population stratification; 2) the average
accuracy in the case in which four eigenvectors are
used as ethnic covariates in the GBM model in addition
to the p-value-filtered SNPs (an ethnicity adjusted GBM);
and 3) the average accuracy of the clustered GBM on our
CV-validation set. We also compare the accuracy of
various GBM models evaluated on the test set.

In order to explore the top-ranked SNPs selected by GBM,
we use the relative influence measure in the GBM package.
There are 19,701 SNPs used in the GBM model with
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Figure 2

Comparing AUC of GBM predictive models. The
average AUC based on 5-fold CV on the training set for
“Adjusted GBM", “3 Clusters", and “No clustering".
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p-value = 0.05 (we chose this traditional threshold because
around p-value = 0.05, the performance of the GBM
classifiers seems to stabilize, Figure 2). Using the four
eigenvectors Vi, V,, Vs, and V; (as explained in the
Methods section), we cluster the whole dataset into three
clusters, C;, C,, Cs, with 1370, 475, and 210 subjects,
respectively. We compare the top 20 SNPs selected by the
adjusted GBM, as well as top 20 SNPs chosen by GBM
models in each of the three clusters in two scenarios: 1)
6p21 and 8p23 regions are excluded; 2) all SNPs that
satisfy our quality control constraints and LD threshold (as
explained in the Data preprocessing section) included.

In the first scenario, as expected, V;, V,, and V, appear at
the top of the list for the adjusted GBM (the p-values for
these eigenvectors are less than 107>*), and there are five
SNPs (including 156596147 on chromosome 5) that
appear in both C; cluster and adjusted GBM model.
Also, 152476601, one of the SNPs in PTPN22 on
chromosome 1 [3], appears in the top 20 list for the
adjusted GBM and for the C, cluster.

In the second scenario that includes SNPs from 6p21 and
8p23, we notice 11 common SNPs between C; cluster
and adjusted GBM, but 7 of these are in 6p21 region.
That suggests that SNPs on the 6p21 region are strongly
associated with RA and are chosen by both full-data
adjusted GBM model and GBM from the largest cluster
C,, perhaps overshadowing other SNPs with more
moderate signal strengths. However, the top 20 list for
Cs shows only two SNPs in 6p21 (one of which also
appears in the adjusted and C; and C, models), but has
16 SNPs in common with the top 20 list for the Cs
model that excludes SNPs from both 6p21 and 8p23
regions. That suggests that while the RA susceptibility of
subjects in cluster C; (and to a lesser extent in C,, which
shares 5 SNPs in 6p21) is influenced by 6p21, genetic
risk profile of subjects in Cs is much less dependent on
that region. We also notice 1s6596147 in 5q31.1 region
appears again in the selected SNPs by adjusted and C,
GBM model, a finding that should be further explored
given the mixed results reported in the literature on the
association of 531 and the RA disease [7,8]. Also,
152476601 in PTPN22 falls from the 8" and 10™ to the
35" and 169" positions in the adjusted GBM and C,,
respectively, suggesting that including SNPs on 6p21
may shadow signals of SNPs in other regions.

Comparing the top ranked SNPs from our models to
their univariate p-values, we notice SNPs such as
1s2395117 in 6p21, which has the smallest p-value =
1.6 x 10™° (that is in top 20 list of all models in the
second scenario), and SNPs such as rs2691269 on
chromosome 19 with p-value = 8.7 x 10~ (that is ranked
3,905 SNPs in the univariate p-value analysis), implying
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that top-ranked SNPs in GBM do not necessarily have the
lowest p-values. It should be noted that there was no
SNP in the top-ranked SNP list of any GBM model from
the 8p23 region.

Discussion

The main purpose of our five-fold CV was to select the
p-value threshold that maximizes the accuracy of the
prediction model on our training set. However, as Figure 2
shows, the GBM model is relatively robust with respect to
the number of irrelevant SNPs included in the model. This is
encouraging news, suggesting that such an expensive CV
exercise may not be necessary with the GBM model.

We notice that the adjusted GBM outperforms all other
predictors: this was expected because the four eigenvectors
are highly correlated to the case status (their corresponding
p-values were less than 10®). However, such a model may
not be able to discover novel SNPs with moderate signals
because they may be overshadowed by strong eigenvector
covariates. Also, its prediction error is likely underesti-
mated: if deployed in the population with much different
ethnicity distribution, such a model would likely fare much
worse. This is because much of its predictive performance
gains are likely due to predicting underlying ethnicity
rather than disease status, which appears strongly con-
founded in this dataset.

Clustered GBM exhibits higher prediction accuracy
compared to the unclustered GBM. Following the
paradigm of “divide and conquer", that could be
explained by the fact that clustering can make the
classification problem easier by dividing the training
data into more homogenous subject groups.

We also observe that we achieve a higher performance on
the test set than the CV results. This is likely due to the 25%
increase in the sample size for the model built for the test
set prediction as compared with models built during CV.

Conclusion

In this paper, we developed a prediction model of RA risk
using a GBM predictive framework. To avoid confounding
by ethnicity, the data were first clustered on the axes of
genetic variations. An ensemble of three GBM classifiers
were then trained on the three resulting clusters, which are
assumed to be ethnically more homogenous. For predict-
ing the case-control status of a subject in the test set, we
first determined the cluster that the subject belonged to by
projecting on the axis of genetic variation, and then applied
the corresponding GBM model.

We are interested in further investigating the set of SNPs
ranked higher by the clustered GBM model, and in
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comparing them with those reported in the literature. It
would also be interesting to validate our model on
another RA dataset with a different ethnicity distribution
to confirm that we have, at least partially, avoided
confounding when developing our prediction model.
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