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Abstract

Based on a “training” sample of 1,042 subjects genotyped for 5,728 single-nucleotide polymorphisms
(SNPs) of a conventional 0.4-Mb genome scan and a “test” sample of 746 subjects genotyped for
545,080 SNPs on a 500k-chip, we investigated the extent to which the subjects’ immunoglobulin M
levels can be reproducibly predicted from a multilocus genotype. We were specifically interested in the
reproducibility of predictors across populations (1,042 versus 746 subjects) and across SNP sets
(conventional genome scan versus anonymous 500k-chip) because this is a prerequisite for clinical
application. For the training sample, neural network (NN) analysis yielded classifiers that predicted
immunoglobulin M levels from the subjects’ multilocus genotypes at acceptable error rates through a
configuration of 15 genomic loci (61 SNPs). With the test sample (746 subjects) we addressed the
question of reproducibility across populations and across SNP sets by means of a novel “competitive
SNP set” approach. However, the chip data contained several sources of distortion, including greatly
elevated noise levels and artifact-prone SNP regions, thus complicating attempts to verify the
reproducibility of NN predictors. Though 5 of 15 genomic loci from the training samples appeared to
be reproducible, the NN classifiers derived so far from the test samples are insufficiently compatible
with the training samples. Nonetheless, our results are promising enough to justify further
investigations. Because the underlying algorithm can easily be split into parallel tasks, the proposed
“competitive SNP set” approach has turned out to be well suited for computers with today’s 64-bit
multiprocessor architectures and to offer a valuable extension to genome-wide association analyses.

Background
In this investigation we focused on the immunoglobulin M
(IgM) phenotype because a heritable malfunction of the
inflammatory response system has been linked to various

complex diseases. The “natural” antibody IgM displays a
high within-pair concordance in monozygotic twins in the
range of 0.849 ± 0.091, while chronically elevated IgM
levels develop years before the first clinical symptoms
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occur [1]. Thus, chronically elevated IgM levels have been
hypothesized to be related to a heritable malfunction in
the inflammatory response system. To investigate the
extent to which IgM levels can be reproducibly predicted
for each individual patient from his/her multilocus
genotype, we aimed at carrying out a neural network
(NN) analysis with a sufficiently large sample (Genetic
Analysis Workshop (GAW) 15: n = 1,042 subjects
genotyped for 5,728 SNPs of a 0.4-Mb genome scan)
under the constraint of a 10-fold cross-validation. Because
NN results tend to be over-optimistic, we were specifically
interested in the reproducibility of predictors across
populations ("training” versus “test” samples) and across
single-nucleotide polymorphism (SNP) sets (convention-
ally designed genome scan versus anonymous 500k-chip).
To address these issues, we used independent test samples
(GAW16: n = 746 subjects genotyped for 545,080 SNPs of
a 500k-chip) along with six different SNP sets, each with
5,728 SNPs drawn from the 500k-chip under the constraint
of maximum informativeness and compatibility with the
training SNPs.

Methods
NN analysis
Standard (logistic) regression connects genotype with
phenotype in a direct way, thus greatly simplifying
biology. In fact, genes code for proteins or RNA ("gene
products”), which may interact in a variety of ways and
influence the phenotype only after a cascade of
intermediate steps. Molecular-genetic NNs generalize
standard regression analysis in a very natural way by 1)
implementing multistage gene products through one or
more intermediate “layer(s)” (Fig. 1), and 2) allowing

for (linear/nonlinear) interactions between genes and
between gene products. It is the advantage of NNs that
the knowledge about the cascade of intermediate steps,
which ultimately lead from genotype to phenotype, can
be incomplete or even unknown ("hidden layers”). In
this case, the model’s gene product layers lack direct
interpretation and act in the manner of a “black box” [2].
However, the influence of each single gene on the
phenotype, as well as the interactions between genes, can
be quantified and detailed through analysis of the
weight matrices of the fitted model.

The most popular learning strategy, the back-propagation
algorithm, looks for the minimum of the error function in
the weight space (goodness of fit) using the method of
gradient descent. The basic algorithm is:
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where xk denote observed genotypes, yi observed
phenotypes, s the activation function of sigmoid-type:
R Æ (0,1), a the learning rate, and p the number of
subjects. This algorithm can easily be adapted to the
requirements of specific genetic analyses.

k-Fold cross-validation
Results derived through the standard NN approach,
which uses 80% of samples for training and the
remaining 20% for testing, tend to be over-optimistic,
in particular if genotype errors and missing data are
present. Therefore, in the k-fold cross-validation, the data
are split into k roughly equal parts, and k-1 partitions are
used for training, while one partition is used for testing.
This process is repeated until each partition has served as
a test set, so that k estimates of prediction error are
generated. The resulting prediction error is approxi-
mately unbiased for the “true” error if k is sufficiently
large (k ≈ 10 is a typical value in practice).

Study population
Our training sample comprised 511 nuclear and multiplex
families with 1,073 subjects ascertained through index cases
with a diagnosis of rheumatoid arthritis. All subjects were
genotyped for 5,728 specifically selected SNPs of a

Figure 1
Molecular-genetic neural network analysis. Molecular-
genetic NN that connects multiple genetic factors as
observed in each individual patient through a layer of gene
products to a one-dimensional phenotype, for example, the
IgM level.
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conventionally designed genome scan resolving an average
0.4-Mb inter-marker distance (GAW15) [3]. As intra-lab
(9-15%) and inter-lab (10-20%) variations of IgMmeasures
do not allow NN analyses of raw data, we defined three IgM
categories that appeared to be suitable for clinical use:
1) normal: 0 ≤ IgM < 13.5; 2); low: 13.5 ≤ IgM < 50; and
3) elevated: 50 ≤ IgM. Due to incomplete data 31 subjects
had to be excluded from the analysis, so our training sample
included a total of 1,042 subjects. Our replication sample
comprised those 746 subjects of the GAW16 rheumatoid
arthritis study for whom IgM levels and 500k-chip data were
available.

Two-stage optimization procedure
In a first step ("screening”) we looked for clusters of at
least three SNPs within a 0.5-Mb region that contributed
to the observed IgM distribution in terms of NN
performance rates above a prespecified threshold under
the constraint of a ten-fold cross-validation. The thresh-
old was chosen in such a way that less than 10% of the
SNPs under investigation entered the subsequent opti-
mization phase that relied on the resulting clusters as
SNP “pool”. In the second step, we constructed NN
classifiers in a systematic way by iteratively adding or
removing genomic loci from the SNP “pool” and fitting
the NN model to the 1,042 observations under the
constraint of a ten-fold cross-validation. The number of
correctly classified subjects, averaged across the ten
solutions, served as an optimization criterion. Our NN
approach included a single intermediate layer with the
number of gene products equalling the number of
genomic loci, while a single output node formed the
one-dimensional phenotype (Figure 1).

Results
Training samples: predicting IgM level from genotype
The initial screening step revealed 80 clusters of at least
three SNPs within 0.5-Mb regions that then served as the
SNP “pool” for the construction of NN classifiers.
Averaged across the ten solutions and applied to the
1,042 probes, weight matrices and classifiers yielded an
(estimated) overall performance for each optimization
step. The optimization stopped when a plateau was
reached at a rate of 77.3% (± 0.636) correctly classified
subjects (Figure 2), a rate that was within the expected
range based on the data from monozygotic twins. The
final configuration included 15 genomic loci (61 SNPs)
that later on served as reference in the replication
analyses.

Compatibility between training and test samples
Of the initial 5,728 training SNPs, only 2,179 (38.0%)
were included in the 500k-chip used with the test

samples. In most cases, however, at least 8 SNPs were
found in the ± 0.1 Mb surrounding interval, except for
121 genomic regions (2.1%) insufficiently covered by
the chip. As for informativeness, 33.4% of the chip SNPs
displayed insufficient allelic variation, essentially raising
the overall “noise” level. By contrast, this latter rate was
as low as 4.4% for the training set. IgM prevalences
showed significant differences between training sample
(62.1% normal, 24.7% low, and 13.2% elevated) and
test sample (52.3% normal, 29.6% low, and 18.1%
elevated) by design. These differences, however, were
irrelevant for the envisaged replication analyses.

“Competitive SNP set” approach: selecting
SNP sets from 500k-ship
Based on NCBI36 data, the coordinates Xk of the 5,728
SNPs of our training sample were used to define
surrounding Xk ± 0.1 Mb intervals (k = 1,2,...,5,728).
Typically 50 to 80 SNPs of the 500k-chip were located in
these intervals and served as pool for selecting eight
“optimal” SNPs in terms of informativeness and vicinity to
the original loci at Xk (k = 1,2,...,5,728). Finally, six subsets
of 5,728 SNPs each were constructed by randomly
combining SNPs from each interval (Figure 3). This
process led to mutual overlaps between the six subsets in
the range of 14.6 to 16.6%. Due to missing data, typically
40 SNPs (0.7%) of the resulting sets had to be excluded
from analysis.

Figure 2
Optimization of neural network classifiers. Iterative
optimization of the starting configuration by systematically
adding/removing genomic loci while fitting the NN model to
the set of 1,042 observations under the constraint of
reproducibility with ten-fold cross-validation. The red circles
designate the percentage of correctly classified subjects for
each optimization step, with optimization steps being plotted
along the x-axis (over-proportionally large drops in
performance indicate removal of loci of larger weight).
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Test samples: reproducibility of NN predictors
When applied separately to the six competitive SNP sets,
the screening procedure of our two-stage optimization
algorithm yielded 55 to 74 clusters of at least three SNPs
within 0.5-Mb regions. This is a somewhat smaller yield
compared to that of the training sample, yet a presum-
able consequence of the lower allelic variability found in
the chip data. Subsequent optimization steps yielded
relatively reproducible results (across four out of six SNP
sets) for 5 of the 15 genomic loci derived from the
training samples (APOB [chromosome 2], CHMP2B
[chromosome 3], TFNa [chromosome 6], TBP [chromo-
some 6], and NLRP7 [chromosome 19]), whereas the
most stable regions for the test samples appeared to be
mere artifacts inherent in the 500 k chip: 1) across all six
SNP sets (13: 18407432-18467428), (20: 22347-24962),
and 2) stable across five out of six SNP sets

(3: 127908352-127934624), (7: 64334980-64399828),
(10: 42184144-42240840), (12: 132000536-132033000),
(17: 524930-565912), (19: 18062756-18176628). In conse-
quence, theNNclassifiers so far derived from the test samples
showed insufficient compatibility with those of the training
samples and still require improvements.

Discussion
Given the strong evidence for the involvement of
inflammatory processes in the pathogenesis of various
complex illnesses, attempts to “explain” chronically
elevated IgM levels in the individual patient through
genotype patterns is quite intriguing, as this would offer
the opportunity for early intervention before the onset of
clinical manifestations. While a conventionally designed
0.4-Mb genome scan enabled the construction of

Figure 3
Learning through multiple re-tests. Based on independent training samples (n = 1,042; genotyped for 5,728 SNPs of a
conventional 0.4-Mb genome scan) and test samples (n = 746; genotyped for 545,080 SNPs of a 500k-chip), we investigated the
extent to which the subjects’ individual IgM levels can be reproducibly predicted from a multilocus genotype. To test the
reproducibility of predictors across populations and across SNP sets, a “competitive SNP set” approach was used to extract
six subsets of 5,728 SNPs each from the 500k-chip data according to the criteria: 1) close vicinity to the original training set;
2) maximum informativeness; and 3) <20% overlap between the six subsets.
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multilocus classifiers through NN analysis, genome-wide
association approaches on the basis of 500 k chip data
have turned out to involve several sources of distortion,
including greatly elevated noise levels and artifact-prone
SNP regions. These difficulties have complicated our
attempt to verify the reproducibility of NN predictors
across populations and across SNP sets - a prerequisite
for clinical application - through a novel “competitive
SNP set” approach. Nonetheless, our results so far are
promising enough to justify further investigation.

Conclusion
Molecular-genetic NN analyses provide powerful tools
when analyzing complex genetic processes where multi-
stage gene products and (linear/nonlinear) interactions
between genes and between gene products play a central
role (as is the case with most biological phenomena).
While the ultimate goal of molecular-genetic research is
the detection of “causality”, clinicians are also interested
in reliable classification and prediction through “objec-
tive” laboratory methods. Because the underlying algo-
rithm can easily be split into parallel tasks, the proposed
“competitive SNP set” approach is well suited for
computers with today’s 64-bit multiprocessor architec-
tures, and thus a valuable extension of standard genome-
wide association analyses.
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