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Abstract

Random forest is an efficient approach for investigating not only the effects of individual markers on
a trait but also the effect of the interactions among the markers in genetic association studies. This
approach is especially appealing for the analysis of genome-wide data, such as those obtained from
gene expression/single-nucleotide polymorphism (SNP) array experiments in which the number of
candidate genes/SNPs is vast. We applied this approach to the Genetic Analysis Workshop 16
Problem 1 data to identify SNPs that contribute to rheumatoid arthritis. The random forest
computed a raw importance score for each SNP marker, where higher importance score suggests
higher level of association between the marker and the trait. The significance level of the
association was determined empirically by repeatedly reapplying the random forest on randomly
generated data under the null hypothesis that no association exists between the markers and the
trait. Using random forest, we were able to identify 228 significant SNPs (at the genome-wide
significant level of 0.05) across the whole genome, over two-thirds of which are located on
chromosome 6, especially clustered in the region of 6p21 containing the human leukocyte antigen
(HLA) genes, such as gene HLA-DRB1 and HLA-DRA. Further analysis of this region indicates a strong
association to the rheumatoid arthritis status.

Background
Rheumatoid arthritis (RA), a common autoimmune
disease with pathological symptom of swelling and
inflammation, may cause severe damage to diarthrodial
joints and even movement disability [1]. Approximately

1% of the adult populations in the world are affected by
RA, and women are more vulnerable to this disease than
men [2]. Research has led to improvements in RA therapy,
but the etiology of the pathophysiological and molecular
mechanisms underlying RA is not well understood.
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Random forest has the ability to investigate the effect of the
interactions among the markers in genetic association
studies. A random forest consists of many classification
trees and is known to be more reliability than a single tree
in classification. Thus, it has been widely used for gene
expression and single-nucleotide polymorphism (SNP)
data analyses [3-5]. Using a random forest, one can
estimate the impact of each variable on prediction results
by calculating a measurement called importance [6]. For
example, Sun et al. used random forest for the RA status
prediction on the Genetic Analysis Workshop (GAW) 15
RA data including 5742 SNPs [3]. Although no single SNP
was significant, they achieved an appealing prediction
performance with their top 500 SNPs ranked by impor-
tance index. Based on these results, Sun et al. were able to
accurately predict RA patients with high sensitivity and
specificity. This conclusion can be explained by the fact an
importance score is based not only on the contribution of a
single variable, but also on its interactions with other
variables. The importance index is a better measurement of
an “overall” association of the variable with the disease
compared to other statistics, e.g., the allelic chi-square
statistic, designed for single marker association tests.
However, one shortcoming of the importance index is
that it does not seem to have an apparent, simple
asymptotic distribution. Thus, it is hard to find significant
SNPs from the results of importance index, even when we
know high-ranking SNPs should have a better chance of
being significant than low-ranking SNPs. Similar
approaches to identifying important genes have been
proposed by Chen et al. [4] for genome-wide studies and
by Rodenburg et al. [7] for microarray data. In this study,
we address this issue by estimating empirical p-values for
importance index using the North American Rheumatoid
Arthritis Consortium (NARAC) SNP data. We also apply a
permutation model with the null hypothesis of no
association between SNPs and RA status. Using a random
forest approach, we were able to detect SNPs with
significant importance.

Methods
Dataset
The GAW16 Problem 1 RA dataset comprises whole-
genome data from NARAC. It contains 868 cases and 1,194
controls, and 545,080 SNP-genotype fields from the
Illumina 550 k chip. In this work, we first consider all
531,689 autosomal SNPs, discarding the mitochondrial,
X, Y, and pseudo-autosomal chromosomes. By removing
those SNPs with excessive missing data (missing >20%),
we analyzed a total of 530,959 autosomal SNPs.

Random forest
Random forest is a combinational classifier proposed by
Breiman [6] that includes multiple individual

classification trees. A classification tree is a classifier
that uses a graphic tree model. The prediction procedure
is based on a recursive partitioning method [8].
Compared to a single classification tree, a random forest
is regarded as a more reliable and robust alternative. To
build a random tree in the random forest, first, a
bootstrap dataset is formed by sampling with replace-
ment from a training set. The size of the bootstrap
dataset is equal to the training dataset. The unsampled
data is known as the out-of-bag data. Next, a random set
of the variables at each node is selected, and then the tree
is fully grown without pruning. Finally, the previous
process is repeated to develop multiple individual
random trees. The strength of random forest lies in the
fact that the ensemble can achieve both low-bias and
more accurate results than a single classification tree.

An important feature of the random forest is the variable
importance index [6], reflecting the contribution of a
variable to the improvement of classification. Specifi-
cally, after a tree t is built from a bootstrap dataset, the
out-of-bag samples are used as its test set. The number of
correctly classified samples, countt, ini, is calculated. Next,
for each variable v, the values of variable v in the out-of-
bag samples are randomly permuted. This permuted
dataset is used as the tree t’s new test set, and number of
correctly classified samples, countt, v, based on this
permuted dataset is calculated. Finally, the raw impor-
tance score for the variable v is defined as:

importance
N

count countv t ini t v

t

N

= −
=

∑1

1

( ),, , (1)

where N represents the number of trees in random forest.

Test procedure
The test procedure proceeds in three steps. First, we apply
the random forest by using individual SNPs as features
and the case/control disease status as outcome and
calculate the raw importance score of each SNP. Here the
number of trees used in random forests is set to 20,000.
Because of the massive number of SNPs (530,959),
the number of SNPs used to split on at each node is set
to be 530 959, = 728. So statistically every SNP can be
sampled at each node, especially at the root node.
Second, to evaluate the significance of raw importance
scores for a single SNP in its association with the disease
status, the status of case/control is permuted randomly
in the whole dataset. Then we reapply the random forest
method on the permuted dataset and recalculate the
importance scores. The maximum importance score over
all the SNPs is recorded. Finally, the second step is
repeated 5,000 times. Under the null hypothesis of no
association between SNPs and the disease, a distribution
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of the maximum importance of single SNP is obtained
based on the 5,000 runs, which can be used to assess the
significance level of raw importance score in the original
dataset.

Results
At the genome-wide significance level of 0.05, we found
228 significant SNPs across the whole genome, and the
number of the significant SNPs in each chromosome
is shown in Table 1. Chromosome 6 has the largest
number of significant SNPs associated with the RA status
(181 SNPs), while chromosomes 19 and 9 have nine and
eight significant SNPs, respectively. All three of these
chromosomes have been reported to be in linkage with
the RA disease locus [9-15].

Figure 1 further illustrates the details of the results on
chromosome 6. Almost all significant SNPs (178 out of
181) are clustered into a small region, which we later
found to be a part of HLA region in 6p21. Further
analysis revealed that this region contains many known
RA related genes, such as HLA-DRB1 and HLA-DRA1

Table 1: Numbers of significant SNPs in 22 autosomal chromo-
somes

Chromosome No. SNPs

1 3
2 0
3 1
4 0
5 1
6 181
7 2
8 2
9 9
10 1
11 2
12 3
13 1
14 5
15 1
16 2
17 2
18 0
19 8
20 1
21 0
22 3

Figure 1
The raw importance scores of SNPs on chromosome 6.
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[9,10]. Moreover, these 178 significant SNPs are related
to known genes according to the NCBI SNP database. For
example, SNPs with highest importance score
(rs3129871, rs3129882, rs2239804, and rs7192) are all
located in the ORF of HLA-DRA1, the HLA class II alpha
chain paralogs, which works with HLA-DRB1 to form the
class II heterodimer by anchoring to the cell membrane.
It is noteworthy that there are five significant SNPs
(rs3817973, rs2076530, rs3817963, rs3793126, and
rs3806156) belonging to gene BTNL2, which was
previously identified as predisposing to the RA diseases
[11]. This association may be due to the strong linkage
disequilibrium with HLA DQB1-DRB1 haplotypes [12].

Tables 2 and 3 list the significant SNPs on chromosomes
9 and 19. The names of genes and the chromosomal
positions where those SNPs reside are also given. Most of
the significant SNPs are located in the 9q33-34 and
19p13 regions. Several SNPs in the 9q33.2 region have
been identified to be associated with RA [14]. In
addition, we identified a few novel regions, such as
9q24.3, to be associated with RA. On chromosome 19,
Thompson et al. [15] detected a significant linkage peak
in the 19p13 region for juvenile RA; however, to our
knowledge, no association studies have reported find-
ings in this region. The genes displayed in Tables 2 and 3
have not been previously found to be associated with
RA, and hence warrant further investigation.

Conclusion
In this paper, we adopted the random forest approach
for RA study on GAW16 Problem 1 and used a
permutation procedure to estimate the significant level.
As previously reported, our analysis confirmed that the
region in 6p21 of chromosome 6 contains an abundance
of significant SNPs. Also we found that some of the
significant SNPs are related to known genes such as
HLA-DRA1 and BTNL2. Moreover, we also detected two
regions on chromosomes 9 and 19 for which significant
linkage signals were previously reported. These results
demonstrate that random forest can be a useful tool in
detecting markers and chromosome regions that are in
linkage disequilibrium with the disease alleles.

List of abbreviations used
GAW: Genetic Analysis Workshop; NARAC: North
American Rheumatoid Arthritis Consortium; RA: Rheu-
matoid arthritis; SNP: Single-nucleotide polymorphism.
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