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Abstract

Genetic analysis of complex diseases demands novel analytical methods to interpret data collected
on thousands of variables by genome-wide association studies. The complexity of such analysis
is multiplied when one has to consider interaction effects, be they among the genetic variations
(G % G) or with environment risk factors (G x E). Several statistical learning methods seem quite
promising in this context. Herein we consider applications of two such methods, random forest
and Bayesian networks, to the simulated dataset for Genetic Analysis Workshop 16 Problem 3.
Our evaluation study showed that an iterative search based on the random forest approach has the
potential in selecting important variables, while Bayesian networks can capture some of the

underlying causal relationships.

Background

Complex diseases such as coronary heart disease (CHD)
are results of failures in complex biological systems.
Multiple factors (genetic and environmental) are
involved in the etiology; and the disease outcomes
most likely reflect the interactions of the factors involved
at different biological levels and in varying context. This
has led to the new “global” approach to genetic studies
of common diseases, including the most recent genome-
wide association studies (GWAS); it has also brought
tremendous analytical challenges [1]. For example,
methods depending solely on p-values from testing
individual single-nucleotide polymorphisms (SNPs)
may not be enough to identify culprit variants in a vast

sea of SNPs [2]. On the other hand, although considered
crucial in the genetic composition of diseases, interac-
tions are seldom analyzed directly in GWAS studies.
Even pair-wise interactions among SNPs are already
computationally strenuous [3].

Our investigation showed that the approach of statistical
learning (i.e., selecting sets of variables by repeated
learning from examples [4]) seemed promising in
dealing with high-dimensional problems, especially in
the presence of interactions. In particular, several well
known statistical learning methods demonstrated their
capabilities in handling the complexity of GWAS in
different scenarios and at different levels. For example,
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random forest (RF) [5] performed quite well in small
datasets and simulation studies [6,7]. It seems that
without explicitly modeling the interactions, RF can rank
predictors reasonably well by counting in their joint
effects. On the other hand, Bayesian networks (BNT)
analysis seems capable of capturing biologically mean-
ingful interactions among a group of factors involved in
a complex manner in common diseases [8,9]. However,
neither method seem suitable for being directly applied
to GWAS data, which now typically have over 500 k
variables. The simulated data set from Genetic Analysis
Workshop (GAW) 16 Problem 3 provides an opportu-
nity for identifying breaking points of these learning
methods and for evaluating their extensions for handling
extremely high-dimensional GWAS data.

Methods

GAWI16 Problem 3 data set

The simulated data of GAW16 Problem 3 is based on the
Framingham Heart Study pedigrees of 6,476 individuals,
and real genome-wide SNPs typed using two Affymetrix
platforms (500 k and 50 k arrays) [10]. This evaluation
study is performed on a random sample of 1,117
independent individuals selected from the familial dataset.
There are two simulated cardiovascular phenotypes, the
binary myocardial infarction (MI) and the continuous
endophenotype coronary artery calcification (CAC). MI is
directly affected by two groups of interacting factors (one
among SNP¢;, smoking, and CAC; the other SNP ¢, and
CAC). CAC is directly affected by five SNPs (t; and 1,
interact, t; has weak marginal effect, 7, a measurable
additive effect; t; and 1, interact, but none with detectable
marginal effect; 15 displays heterosis, i.e., only the
heterozygous genotype is protective). Other simulated
risk factors include high-density lipoprotein (HDL), total
cholesterol (CHOL) and triglyceride (TG) levels, and the
age of the subjects. Longitudinal data of phenotypes were
simulated for three time points in 200 replicate datasets.
We used only the second observations of phenotypes (with
2" appended after variable names, e.g.,, CAC2) and the 50 k

genotypes.

RF analysis

RF originates from the classification and regression trees
(CART) [5,7]. It consists of a collection of trees, each
grown on a bootstrap sample of observations, and at
each node of a tree, small random subset of predictors is
searched for the best split. Prediction of RF is made by
aggregating predictions from all trees in the forest.
Unbiased generalization error is generated without
requirement of an extra testing sample. It provides
measures for each variable’s predictive importance.
Because the importance measure for a variable entails
interaction effects with other factors, there may be no
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need to explicitly model each possible interaction terms
repeatedly. This feature makes it most suitable for large-
scale studies such as GWAS.

However, direct application of RF to 500 k or even 50 k
SNPs may not be feasible. Because of the extremely high
dimensionality, including all SNPs in a single RF analysis
can lead to “fitting to noises”. We devised a new procedure
to limit the number of variables that are piped to RF in an
iterative manner. Each variable in the large data set could
be evaluated many times with different groups of other
variables. Globally important variables could be selected
after many iterations. At the end, our RF procedure returns
a very small set (~15 for the current study) of predictors
from all input variables (GWAS SNPs and other covari-
ates), which have high importance and jointly give pretty
good prediction rate by RF.

This procedure is tested on CAC2 levels and the 50 k
SNPs data. We consider only the first ten replicate data
sets due to time constraint (each with < 1,000 iterations),
and we are interested in how many times the true risks
were captured in the returned set of predictors. We used
the R package randomForest for deriving RFs.

BNT analysis

BNT is a graphical model used to learn structure (joint
multivariate probability distribution) of a set of random
variables that reflects relationships of dependence and
conditional independence among them [8,9]. In a BNT,
variables are represented as vertices (nodes) and depen-
dencies as arcs (or edges) between the variable nodes. The
directions of edges indicate the directions of dependencies
favored by the observed data, although they do not
necessarily imply causality. We applied BNT to the set of
known predictors for the binary MI event and its
endophenotype CAC to see whether the method can
reliably “learn” important relationships among all relevant
variables. Four scenarios were considered. Scenario 1: test
includes Mlevent2, CAC2, and true predictors: smoke, age,
HDL, CHOL and the seven risk SNPs; Scenario 2: includes
all variables in Scenario 1 and seven random SNPs that are
not in linkage disequilibrium (LD) with any risk SNPs;
Scenario 3: includes all variables in Scenario 1 and seven
random SNPs that are in LD with the risk SNPs; Scenario 4:
includes all variables in Scenario 1 and 50 random SNPs.
We applied 100-fold bootstrapping to assess the stability of
derived relationships. Results were averaged over the 200
replicate data sets.

Results

RF analysis

Before testing our new procedure, we first performed an
experiment to examine how too many noise SNPs could
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result in the RF “fitting to noise”. Original RF was
applied in tests that included five risk SNPs of CAC, three
environment covariates, and different numbers of
randomly selected (noise) SNPs. This was repeated in
the first 100 replicate datasets and results are summar-
ized in Figure 1, where the “relative rank” of each risk
SNP is plotted against the number of noise SNPs. The
measure is simply the importance rank for that SNP
divided by the total number of predictors, and should
tell if the SNP could be picked out at a certain cut-off. It
is clear that 1, and 14 are always difficult to detect
(median relative rank > 0.5). When the noise SNPs are
not many, they could easily be found among the top
important predictors. As the noise level increases, it
becomes difficult to detect them. This shows the
necessity to limit the number of variables in the RF
analysis, as we proposed to do in the iterative procedure.

Ts

Number of SNPs

Figure |

Rank of risk SNPs in random forest as noise level
increases. The five risk SNPs (t,-t5) for CAC were tested
with 3 environment factors and different numbers of noise
SNPs (see text). At each level of noises, the test was
repeated 100 times. We define relative rank of a variable to
be the rank of variable importance normalized by the total
number of predictors. Lower value indicates the variable is
easier to be detected by random forest. The plot shows the
quantiles of relative rank for the five risk SNPs. The 3 kinds
of curves represent 50%, 30™ and 10" quantiles, respectively
(marked as “50%", “30%” and “10%” in the plot).
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We then applied the new iterative procedure that limits
number of SNPs fed to the RF. The method almost
always identified the three major risk factors, CHOL,
HDL, and age (nine, ten, and ten times out of ten
replicates, respectively), and detected consistently one
CAC risk SNP 15 (five times out of ten replications) that
has substantive marginal effect in the true model. It
seems that the performance of the procedure was less
than optimal in detecting “pure” interactions because
none of the other four risk SNPs was identified.

Finally, we compared the modified RF analysis with the
original RF that uses all GWAS SNPs (41,006) and eight
covariates as predictors, to see whether the iterative
procedure indeed performed any better. The three
covariates were still always ranked with top importance
in the RF test. However, the ranks of the five risk SNPs
were generally very low. Only two SNPs were ever found
among the top 100 predictors. Once 1, was ranked at 85
and another time tswas ranked at 69. In contrast, using
our new procedure 15 was detected five times, with a
ranking of 19 or better.

Bayesian network tests

Many real relationships, especially those between CAC,
smoke, and MI event were recovered by BNT analysis, while
many others were not. In Table 1, we show results of
bootstrapping analyses that assess the stability of learned
relationships, where ¢, ¢, and 1,-t5 are true risk SNPs, and
nl, n2, .., denotes noisy SNPs included in the learning
dataset. The analysis was repeated in all 200 replicate
datasets and averaged results are displayed in Table 1. In all
four scenarios, relationships between smoke and MI, CAC
and MI, CHOL and CAC are most reliably detected (>50%).
Other environment risk factors and the genetic factors also
show appreciable confidence (over or close to 20%), while
noise SNPs generally have averaged below 10%. Note that
some important relationships involving t5 (with MI and
CAC) also enjoyed the best reproducibility (37%) com-
pared with those for other risk SNPs. While LD among noise
and risk SNPs seemed irrelevant, the reproducibility quickly
deteriorates as the number of noise SNPs increases. It
becomes hard to discriminate risk SNPs from noise when we
included over 50 random SNPs.

Discussion

Extensions of RF have been proposed and applied to gene
expression data, aimed at identifying variables important
to the trait of interest [11]. These approaches start from the
whole set of predictors and gradually decrease the number
of predictors fed to RF by discarding the worst performers
at each iteration. For application of RF to GWAS, the study
by Schwarz et al. presented at GAW15 [12] is particularly
interesting. They repeatedly grow 155 RFs with 5,000
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Table |: Bootstrapping results of detected edges from predictors to phenotypes

Scenarios
Original + 7 LD free SNPs + 7 SNPs with LD + 50 random SNPs
Predictors and SNPs Mlevent2 cac2 Mlevent2 cac2 Mlevent2 cac2 Mlevent2 cac2
cac2 0.575 0.000 0.603 0.000 0.626 0.000 0.541 0.000
smoke2 0.600 0.264 0.557 0.274 0.603 0.252 0.466 0.238
age2 0.218° 0.253 0.196 0.343 0.181 0.365 0.296 0.250
chol2 0.173 0.670 0.176 0.692 0.174 0.691 0.122 0.713
hdl2 0.162 0.362 0.265 0.286 0.284 0.265 0.124 0.275
sex 0.257 0.247 0.200 0.206 0.183 0.205 0.092 0.099
T 0.213 0215 0.146 0.126 0.144 0.122 0.063 0.067
T, 0.230 0.236 0.171 0.154 0.175 0.156 0.102 0.059
T3 0.192 0.283 0.136 0.134 0.113 0.135 0.090 0.085
T4 0.209 0.270 0.179 0.185 0.179 0.204 0.057 0.084
Ts 0218 0.252 0.195 0.371 0.168 0.321 0.107 0.084
T 0.245 0.169 0.204 0.106 0.228 0.096 0.099 0.076
17 0.236 0.158 0.182 0.136 0.207 0.133 0.110 0.063
nl 0.067 0.063 0.079 0.106 0.040 0.036
n2 0.083 0.093 0.005 0.005 0.012 0.010
n3 0.041 0.051 0.127 0.097 0.013 0.016
n4 0.079 0.064 0.015 0.007 0.033 0.042
n5 0.064 0.065 0.068 0.061 0.007 0.015
né6 0.040 0.034 0.113 0.143 0.022 0.032
n7 0.032 0.032 0.022 0.019 0.028 0.018

?Bold font indicates relationship found in >30% of the 200 replicates by bootstrapping.
Bltalic, underlined font indicates relationship found in >20% (< 30%) of the 200 replicates by bootstrapping.

variables each and averaged the importance score to get
global importance, then performed forward elimination to
select best predicative model. In the current study, we
showed that including too many noise SNPs in single RF
runs can lead to compromised power. We propose a new
procedure that limits the number of predictors piped into
RF at each iteration to control fitting to noise. Comparison
with original RF analysis including all GWAS SNPs seemed
to support this strategy. However, the new procedure did
not perform as well as we expected. We suspect that the
suboptimal performance was partly due to small sample
size or the fact that effects of SNPs are low, and partly due
to the peculiar distribution of CAC phenotype (which has
lots of values “0”, and other values scattered along the
positive axis, and thus departs quite far from normal
distribution, which may make using variance and mean
square error an ineffective way to measure the performance
of regression trees).

Our evaluation of BNT showed that it is ill-performed
when the noise level is too high. It may be best applied
after initial filtering of candidate SNPs and used it to
facilitate the interpretation of results and forming new
hypothesis.

Conclusion
We evaluated two statistical learning methods to GWAS
analysis using simulated data from GAW16 Problem 3.

We showed that including too many noise SNPs in the
analyses may seriously affect their performance. By
limiting number of SNPs fed to RF in a new iterative
procedure, our method out-performed direct application
of RF to the whole GWAS dataset. BNT analysis recovered
some but not all relationships and its performance also
deteriorated as more noise SNPs were included in the
analysis.

These findings demonstrate that the applications of
advanced statistical learning methods to GWAS require
careful consideration on how to limit inclusion of
potential noise SNPs. Further studies are needed to
investigate issues related to sample sizes and false discovery
rate of these methods.
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