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Abstract

The detection of gene-gene interaction is an important approach to understand the etiology of
rheumatoid arthritis (RA). The goal of this study is to identify gene-gene interaction of SNPs at the
allelic level contributing to RA using real data sets (Problem 1) of North American Rheumatoid
Arthritis Consortium (NARAC) provided by Genetic Analysis Workshop 16 (GAW16). We
applied our novel method that can detect the interaction by a definition of nonrandom association
of alleles that occurs when the contribution to RA of a particular allele inherited in one gene
depends on a particular allele inherited at other unlinked genes. Starting with 639 single-nucleotide
polymorphisms (SNPs) from 26 candidate genes, we identified ten two-way interacting genes and
one case of three-way interacting genes. SNP rs2476601 on PTPN22 interacts with rs2306772 on
SLC22A4, which interacts with rs881372 on TRAF1 and rs2900180 on C5, respectively. SNP
rs2900180 on C5 interacts with rs2242720 on RUNX1, which interacts with rs881375 on TRAF1.
Furthermore, rs2476601 on PTPN22 also interacts with three SNPs (rs2905325, rs1476482, and
rs2106549) in linkage disequilibrium (LD) on IL6. The other three SNPs (rs2961280, rs2961283,
and rs2905308) in LD on IL6 interact with two SNPs (rs477515 and rs2516049) on HLA-DRB1.
SNPs rs660895 and rs532098 on HLA-DRB1 interact with rs2834779 and four SNPs in LD on
RUNX1. Three-way interacting genes of rs10229203 on IL6, rs4816502 on RUNX1, and
rs10818500 on C5 were also detected.

Background
Rheumatoid arthritis (RA) is a complex, chronic inflam-
matory disease whose etiology remains unknown. It has
been known that RA is a result of the complicated networks
of multiple genes along with the environmental factors

such as smoking. It is more common in females. Through a
combined linkage and association study [1], the HLA gene
cluster on 6p21 has been shown to have the most likely
predisposing loci for RA. In addition to HLA, numerous
genetic variants influence the pathology of RA.
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Unfortunately, detection of gene-gene interaction has been
challenging due to an issue of high dimensionality from
multi-locus combinations that require a large sample size.

In this study, we applied a novel approach to detect
gene-gene interaction influencing RA using the case-
control subjects provided by the North American
Rheumatoid Arthritis Consortium (NARAC). In contrast
to the previously available method searching for the
interaction at the genotype level, our approach focuses
on the detection of interaction of at the allelic level with
a novel definition: the allele-based gene-gene interaction
occurs when a particular allele in one gene and a
particular allele at another unlinked genes are dependent
on the contribution to RA (Figure 1) [1]. Based on the
639 SNPs from 26 candidate genes related to RA
pathology, we performed a score test based on logistic
regression and a F-test based on the Cochran-Armitage
regression model developed for the detection of allelic
based gene-gene interaction [2,3].

Methods
Characteristics of data
As a regular quality control procedure, population
stratification analysis using all 531,688 single-nucleotide
polymorphisms (SNPs) was performed by EIGENSTRAT
as we included the subjects of the four populations from
HapMap database (Yoruba, CEPH, Japanese, and Han
Chinese). The result showed that the case and control
subjects are confirmed as European Americans. Addi-
tionally, we tested sex inconsistency between X chromo-
some and the clinical report and removed seven subjects
whose data were discrepant. After the removal, 866 cases
and 1189 controls were used for the further analysis. The
26 candidate genes were selected based on the following
reasons: 1) previous reported results (HLA-DRB1,
PTPN22, and TNF) [4,5]; 2) genes related to macrophage
migration inhibitory factor and linked to the production
of inflammatory cytokines (MIF, IL6, IL1B, IL3, IL4, and

IL13) [8,9]; 3) genes playing an immunologically
important role in down-regulating the immune response
(CTLA4, RUNX1, STAT4, and SLC22A4) [8]; 4) genes
used to test for interaction by Mei et al. and Ding et al.
[6,7]; 5) genes relevant to inflammatory disease [8]. We
also removed SNPs deviating from Hardy-Weinberg
equilibrium (p-value < 10-5) and having a minor allele
frequency of less than 0.01. The names, locations, and
the number of SNPs being tested for the 26 genes are
provided in Table 1.

Statistical model
The underlying principle of our method is to identify the
association of allelic combination between two unlinked
markers with a disease trait so that subjects are assigned
an allelic score given their observed genotype informa-
tion. The score is a conditional probability of obtaining
the particular allelic combination given the observed
genotypes at the two loci of each subject. For example, a
subject with AA (at marker M1) and Bb (at marker M2)
genotype has 1/2 in the AB combination and 1/2 in the
Ab combination, XAB = P(AB|M1 = AA, M2 = Bb) = 1/2,
XAb = P(Ab|M1 = AA, M2 = Bb) = 1/2 Table 2 shows the
allelic scores of a subject whose genotype is given [2].

Score statistic by logistic regression model
Denote yi = 1 if ith subject is affected by RA and yi = 0
otherwise. In the non-parametric maximum likelihood

Table 1: List of genes selected for analysis

Gene Symbol Locus No. of SNPs

TNFRSF1B 1p36.22 20
PADI4 1p36.13 16
PTPN22 1p13.3 7
FCGR3A 1q23.3 1
IL1B 2q14 14
ITGAV 2q32.1 16
STAT4 2q32.3 35
CTLA4 2q33 16
IL3 5q31.1 3
IL13 5q31.1 3
IL4 5q31.1 4
SLC22A4 5q31.1 14
HAVCR1 5q33.3 13
NFKBIL1 6p21.3 7
HLA-DRB1 6p21.3 6
LTA 6p21.33 4
TNF 6p21.3 1
MAP3K7IP2 6q25.1 52
IL6 7p21 96
TRAF1 9q33 3
C5 9q33 27
DLG5 10q22.3 26
MS4A1 11q12.2 11
CARD15 16q12.1 10
RUNX1 21q22.12 216
MIF 22q11.23 18
Total 639

Figure 1
Cell combinations of two unlinked markers; M1 has A
and a alleles, and M2 has B and b alleles.
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solution that allows an arbitrary covariate distribution,
fitting a standard prospective logistic regression in case-
control sampling design is equivalent to fitting a
retrospective logistic regression except that an intercept
in case-control sampling needs the information of
sampling fraction of cases and controls [10,11]. There-
fore, the prospective logistic regression model is used
due to the equivalence in parameter estimates of
interaction effect. The likelihood function of the
standard logistic regression is

L y X X X yAB Ab aB i i AB i aB i Ab
y
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tion. The overall proportion of y is R/N, where R is the
number of case subjects and N is the number of total
subjects. Under the assumption of no covariates, let UT =
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T be the score function, which is a
derivative of the log-likelihood function with respect to
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and V-1 is the submatrix of I-1(a, bAB, bAb, baB), which is
the observed Fisher information matrix corresponding to
Uτ = (UAB, UAb, UaB)

τ. Detailed derivation and theoretical
justification were published by Jung and Zhao [3].

Extension of Cochran-Armitage trend regression
With the same allelic scores in Table 2 at the two
markers, we can model a linear trend of proportion of
cases over total number of subjects at each allelic

combination, pk, j = rk, j/nk, j, where nk, j = rk, j/sk, j for k
Œ (AB, Ab, aB, ab), j Œ (0,1/4,1/2,1) for two markers. rk, j
and sk, j are the number of affected subjects and
unaffected subjects having j score at k allelic combina-
tion, respectively. It has been shown that regressing pk, j
on ZAB, j, ZAb, j, ZaB, j is equivalent to regressing yi on ZAB,

j, ZAb, j, ZaB, j [12]. As an extension of Cochran-Armitage
trend method, the interaction effect of two markers on
RA trait can be modeled as
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brium (LD)between amarker and a disease locus as follows:
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follows F(3, N-4) distribution with l = 0. The analytical
properties of two methods were derived by Jung and Zhao
[3] and simulation studies showed that the score test and
F test by Cochran-Armitage trend are asymptotically
equivalent.

Simulation study of power and type I error rates and
comparison of genotype-based method
A simulation studywas performed to study power and type I
error rates at the 1% significance level [3]. Six two-way
interaction models were simulated using the simulation of
software SNaP [3]. Most of the models were designed based
on the combination of dominant and recessive inheritance
at the genotypic level at each marker. These models are 1)

Table 2: Allelic scores

Allelic score

Genotype AB Ab aB ab

(AA, BB) 1 0 0 0
(AA, Bb) 1/2 1/2 0 0
(AA, bb) 0 1 0 0
(Aa, BB) 1/2 0 1/2 0
(Aa, Bb) 1/4 1/4 1/4 1/4
(Aa, bb) 0 1/2 0 1/2
(aa, BB) 0 0 1 0
(aa, Bb) 0 0 1/2 1/2
(aa, bb) 0 0 0 1
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dominant or recessive (Dom ∪ Rec), 2) recessive or recessive
(Rec ∪ Rec), 3) dominant and dominant (Dom ∩ Dom), 4)
dominant and recessive (Dom ∩Rec), 5) thresholdmodel in
which the disease risk is increased when two or more high-
risk alleles from either locus are present, 6) modified model
in which the homozygosity at either locus confers disease
risk [1]. For each model for type I error rates, we simulated
5,000 data sets. Each data set has 200 case and 200 controls
under no LD between markers and disease loci. The disease
risk allele frequency at each disease loci is 0.2 and theminor
allele frequency of each SNP is 0.3, which is close to the real
data. For power calculation, 2,000 data sets were simulated,
with ′ = ′ =D DAD BD1 2

0 6. at each model. The rest of
parameters are the same as used for type I error rate
calculation.

For comparison of genotype-based method, logistic regres-
sion of two-way interaction is modeled as follows:
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. Additionally, we calcu-

lated the empirical power of multifactor dimensionality
reduction (MDR) in the same simulated data sets. Table 3
illustrates that the power of the score test of the allelic based
method over the six two-interaction models are higher than
that of the two genotype-based methods. Type I error rates
of the allele-based method are close to nominal value of
0.01. Further detailed results of simulation and analytical
derivation are available in Jung and Zhao [3].

Non-nested model comparison using Cochran-Armitage
regression method
Technically, the proposed two-way interaction and three-
way interaction model are not nested models, so an
artificial nesting approach was employed to select the
best model as follows:

Two-way

Thr
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Under the assumption of normal errors, an artificial
nesting approach called the J test [14] was utilized as
follows:

y f X g Z ei i= − ⋅ + ⋅ +( ) ( , ) ( , ) .1 α β α δ (5)

Because f is linear in b, the comparison requires that
one estimates δ and then fits a linear regression and test
for a = 0 using the ordinary t-statistic [13,14]. On the
other hand, we can compare Akaike information
criterion (AIC) and Bayesian information criterion
(BIC) for a two-way model with that of a three-way
interaction model.

Analysis procedure
The procedure to search for the best interaction model
consists of multiple steps based on the proposed
methods.

Step 1
When performing a two-way interaction analysis [Model
(1) and (3)] of two SNPs, each is selected from each gene
and the global test for an interaction is performed. Note
that two SNPs in the same gene are removed from the
interaction analysis. We then compared the interaction
model (3) with a main effect model (6) in order to
search for the pure interacting SNPs that are not
confounded with the main effects, and selected the
best two-way interaction models which met three
criteria: 1) the p-value less than 2.5 × 10-7 from
interaction test (the total 203,841 combination; adjusted
for Bonferroni correction), 2) the p-value of the test for
comparison between the interaction model and the main
effect model less than 0.01, and 3) the testing SNPs
should have both the smallest AIC and the smallest BIC.
The following models were considered:

No genetic effect model

Main effect model

: :

: :

H y

H y
i i

A i

0

1
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Table 3: Type I error rates and power over six two-way interaction models

Allele-based method Genotype-based method

Type I error rate Power Power

Model Score F-test Score F-test Score MDR

Dom ∪ Rec 1.1 1.1 17.3 16.65 9.85 6.3
Modified 0.78 0.84 23.95 23.45 13.75 9.3
Dom ∩ Dom 0.8 0.84 46.75 46.15 29.3 24.5
Rec ∪ Rec 1.22 1.26 58.2 57.7 38.1 31.9
Threshold 1 1.04 92 91.75 80.45 73.45
Dom ∩ Rec 0.92 0.94 96.45 96.3 88.95 82.6
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Step 2
Based on the pair-wise SNPs selected by Step 1, we
conducted three-way interaction model analysis as we
added one SNP at a time from one of the remaining
genes, which is the scheme of the forward selection
procedure. With the same procedure of a two-way model
selection and an additional comparison of the three-way
model with two-way interaction model, the best three-way
interaction models were selected by the same criteria
described in Step 1.

Step 3
We continued these steps until no further high-dimen-
sional interaction model was identified.

Results
Table 4 lists ten pairs of two-way interacting genes and
the function of SNPs identified. Because we analyzed all
SNPs in LD with a gene, there are multiple SNPs in a
gene interacting with a SNP of the other gene. SNP
rs2476601 on PTPN22 interacts with rs2306772 on
SLC22A4, which interacts with rs881372 on TRAF1 and
rs2900180 on C5, respectively. SNP rs2900180 interacts
with rs2242720 on RUNX1, which interacts with
rs881375 on TRAF1. SNPs rs881375 and rs2900180 are
in LD (R2 = 0.89). Furthermore, rs2476601 on PTPN22
interacts with three SNPs (rs2905325, rs1476482, and
rs2106549) on IL6. Three SNPs that are not in LD on IL6
interact with two SNPs (rs477515 and rs2516049) on

Table 4: Results of two-way (two genes) interaction and the characteristics of genes

p-valueb

Gene 1 symbol
(location)

Gene 2 symbol
(location)

SNP1a from
gene 1

SNP 2a

from gene 2
Function
of SNP 1

Function of
SNP 2

Score F-test Main vs.
interaction

PADI4 (1p36.13) X TRAF1(9q33) rs6586516,
rs2477142

rs3761847 5’ UTR 5’ UTR 1.66 × 10-8 1.43 × 10-8 0.005

PTPN22 (1p13.3) X SLC22A4(5q31.1) rs2476601 rs2306772 Coding intron 1.79 × 10-12 1.25 × 10-12 0.0054
PTPN2 (1p13.3) X IL6 (7p21) rs2476601 rs2905325,

rs1476482,
rs2106549

Coding 5’ UTR 3.80 × 10-13 2.53 × 10-13 0.0003

SLC22A4 (5q31.1) X TRAF1 (9q33) rs2073838,
rs2306772

rs881375 Intron 3’ UTR 6.19 × 10-9 5.22 × 10-9 0.0037

SLC22A4 (5q31.1) X C5 (9q33) rs2073838,
rs2306772

rs2900180 Intron 3’ UTR 1.37 × 10-9 1.13 × 10-9 0.0029

NFKBIL1 (6p21.3) X HLA-DRB1
(6p21.3)

rs4947324c rs477515,
rs2516049,
rs532098

3’ UTR 5’ UTR <1.0 × 10-15 <1.0 × 10-15 0.0012

HLA-DRB1
(6p21.3)

X IL6 (7p21) rs477515,
rs2516049

rs2961280,
rs2961283,
rs2905308

5’ UTR 5’ UTR <1.0 × 10-15 <1.0 × 10-15 0.0023

HLA-DRB1
(6p21.3)

X RUNX1
(21q22.12)

rs660895 rs2834779 5’ UTR 5’ UTR <1.0 × 10-15 <1.0 × 10-15 0.0028

HLA-DRB1
(6p21.3)

X RUNX1
(21q22.12)

rs660895,
rs532098

rs4817699,
rs8131102,
rs9984470,
rs9979153

5’ UTR Intron <1.0 × 10-15 <1.0 × 10-15 0.0037

TRAF1 (9q33) X RUNX1
(21q22.12)

rs881375d rs4816502,
rs2242720e

3’ UTR Intron/5’ UTR 3.03 × 10-8 2.62 × 10-8 0.0027

TRAF1 (9q33) X RUNX1
(21q22.12)

rs3761847 rs1981392,
rs2834714,
rs4816502,
rs2242882,
rs932284

5’ UTR Intron 1.29 × 10-11 9.47 × 10-12 0.0001

C5 (9q33) X RUNX1
(21q22.12)

rs10760130 rs1981392,
rs2834714,
rs4816502,
rs2242882

3’ UTR Intron 7.19 × 10-11 5.53 × 10-11 0.0001

C5 (9q33) X RUNX1
(21q22.12)

rs2900180d rs4816502,
rs2242720e

3’ UTR Intron/5’ UTR 2.83 × 10-10 2.24 × 10-10 0.0046

C5 (9q33) X RUNX1
(21q22.12)

rs1468673,
rs10818500

rs2834714,
rs4816502

Intron Intron 1.85 × 10-8 1.59 × 10-8 0.0001

aThe SNPs listed under each gene are in LD (within R2 > 0.8).
bThe smallest p-value of each combination is reported.
crs4947324 on NFKBIL1 and three SNPs (rs477515, rs2516049, rs532098) are not in LD.
drs881375 on TRAF1 and rs2900180 on C5 are in LD with r2 = 0.89.
ers4816502 and rs2242720 on RUNX1 are not in LD, and the function of rs4817502 is intron, that of rs2242720 is 5’ UTR, respectively.
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HLA-DRB1. SNP rs660895 on the same gene interacts
with rs2834779 on the 5’ UTR region on RUNX1, and
rs660895 and rs532098 interact with four SNPs on
RUNX1. Additionally, rs4947324 on NFKBIL1 is not in
LD with three SNPs on HLA-DRB1, but it interacts with
them. Two SNPs (rs6586516 and rs2477142) on PADI4
interact with rs3761847 on TRAF1, which interacts with
five SNPs in LD on RUNX1. Furthermore, we detected
three-way interacting genes which are rs10229203 on
IL6, rs4816502 on RUNX1 and rs10818500 on C5.
Figure 2 summarized the pathway of ten pairs genes and
one group of three interacting genes (indicated in red).

Discussion
In this study, the allele-based gene-gene interaction
analyses were applied to case-control data sets of RA.
Based on the analysis with 639 SNPs from 26 candidate
genes that were previously detected through linkage
study or fine mapping, we identified ten two-way
interacting genes with multiple SNPs in LD from a
gene and one three-way interaction. We have not
identified any four-way interaction effects. However,
the 26 candidate genes selected in this study may not
represent all candidate genes for RA and we observed
that Illumina 550k chip may not have a good gene-wide
coverage for SNPs because no SNPs of SUMO4 and
VEGFA in the platform are available.

A more standard interaction model using a logistic
regression consisting of two main effect terms (X = 0, 1, 2
according to the number of alleles) and a multiplicative
term of the main effect (additive × additive) was applied
to the same data set. There is no interacting SNPs by an
even more lenient criteria (p-value<10-5).

Three criteria to justify the significant interaction models
were used. For the interaction models, Bonferroni
correction was used for multiple testing, and for the
comparison of the interaction model with a main-effect

model (significance level of 0.01), the smaller AIC and
BIC were utilized. The final selected interacting SNPs
satisfied all of the criteria, which may be conservative
and may cause false-negative error. There still remains
the issue of multiple comparisons in the high-dimen-
sional interactions and the complexity of the procedure
to screen the interaction effects.

Conclusion
As shown in the results, the proposed allele-based
approach allows us to identify multiple interactions
that may not have been identified as risk factors for RA.
PTPN22, SLC22A4, HLA-DRB1, IL6, PADI4, TRAF1,
NFkBIL1, C5, and RUNX1 may play interactive roles for
RA, especially PTPN22 and SLC22A4, which are related
to the reaction of antigen for RA. Therefore, our method
taking into account the nonrandom association of all
allelic combinations may help detect novel genetic
variants and interpret biological pathways.
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