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Abstract

The aim of this study was to detect the effect of interactions between single-nucleotide
polymorphisms (SNPs) on incidence of heart diseases. For this purpose, 2912 subjects with
350,160 SNPs from the Framingham Heart Study (FHS) were analyzed. PLINK was used to control
quality and to select the 10,000 most significant SNPs. A classification tree algorithm, Generalized,
Unbiased, Interaction Detection and Estimation (GUIDE), was employed to build a classification tree to
detect SNP-by-SNP interactions for the selected 10 k SNPs. The classes generated by GUIDE were
reexamined by a generalized estimating equations (GEE) model with the empirical variance after
accounting for potential familial correlation. Overall, 17 classes were generated based on the
splitting criteria in GUIDE. The prevalence of coronary heart disease (CHD) in class 16
(determined by SNPs rs1894035, rs7955732, rs2212596, and rs1417507) was the lowest (0.23%).
Compared to class 16, all other classes except for class 288 (prevalence of 1.2%) had a significantly
greater risk when analyzed using GEE model. This suggests the interactions of SNPs on these node
paths are significant.

Introduction
Coronary heart disease (CHD) is a common and
complex disease that is likely to involve many different
genes interacting with each other and with the environ-
ment. Many studies published so far have only

considered single-nucleotide polymorphisms (SNPs) in
a single gene, with little consideration given to the
interactions between genes. The Genetic Analysis Work-
shop 16 (GAW16) Framingham Heart Study (FHS)
dataset provided through the database of Genotype
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and Phenotype (dbGaP) includes data for 550,000 SNPs
and provides us with a unique opportunity to investigate
this issue [1].

Genome-wide association studies (GWAS) systematically
investigate SNPs in the entire human genome. This
process allows identification of SNPs that may be
associated with the disease of interest. Although GWAS
are often criticized for not being hypothesis driven and
can be described as data mining, they have identified
unexpected and unpredictable genetic links that have
advanced scientific knowledge substantially on heart
disease as well as other diseases [2-6].

Challenges of statistical analysis of GWAS data have
been addressed [7]. The most difficult problems asso-
ciated with GWAS analysis are: 1) how to handle
extremely large data sets, often times with >10 gigabytes
and 2) how to deal with a large p, small n problem due
to the immense number of SNPs accompanied by a
relatively small sample size. Different methods have
been proposed to reduce the dimension of the data. One
method is to use machine-learning approaches to select
SNPs that could best explain a phenotype. A classifica-
tion-tree algorithm called GUIDE [8], which stands for
Generalized, Unbiased, Interaction Detection and Estimation,
was employed in the present study. It is specifically
designed to eliminate variable selection bias, a problem
that can undermine the reliability of inferences from a
tree structure. The algorithm of GUIDE is unbiased and
is sensitive to local interactions during split selection.
The FHS data from the GAW16 (Problem 2) was utilized
to examine genes associated with CHD.

Methods
Data set and initial data quality checking
The FHS is a family-based study that enrolled three
generations. CHD is defined as any of the following:
recognized myocardial infarction diagnosed through
an EKG or enzymes, coronary insufficiency, or death
attributed to CHD. The third generation was excluded
from the present analysis because most of them were too
young to develop CHD, creating the potential for
misclassification of the outcome. For the remaining
2941 study subjects, if he/she was ever diagnosed having
CHD during the entire study period, this subject was
classified as having CHD (case). Otherwise, the subject
was classified as CHD free (control).

Dense genotyping for each study subject was performed
using approximately 550,000 SNPs across 22 autosomal
chromosomes (GeneChip Human Mapping 500 k Array
Set and the 50 k Human Gene Focused Panel).
Affymetrix conducted all genotyping for the FHS, using

the 250 k Sty, 250 k Nsp, and the supplemental 50 k
platforms. Quality control checks for the SNPs were
performed in PLINK software [9] (PLINK v1.03, http://
pngu.mgh.harvard.edu/purcell/plink). SNPs with >5%
missing genotypes (n = 31,975) and with minor allele
frequency <5% (n = 111,290) were excluded. Another
20,646 SNPs failed Hardy-Weinberg equilibrium test
(p-value < 0.001). Subjects with >5% of SNPs missing
(n = 29) were excluded. The remaining 2912 subjects
(228 cases and 2684 controls) with 350,160 SNPs were
included in subsequent analyses.

GUIDE
The tree algorithm GUIDE, version 7.0, was used for
building a classification tree [8]. GUIDE develops a tree by
three steps: 1) a chi-square test selects the most significant
split variable to split a node; 2) the split set is selected to
minimize a node impurity measure (the impurity measure
in GUIDE includes entropy and Gini index); 3) Steps 1
and 2 are recursively repeated until too few observations
are in each node. After building a complete tree, three
methods including cross-validation pruning (default),
test-sample pruning, and no pruning are used to decide
how much of the tree to retain. The criteria for pruning is
to minimize unbiased estimate of misclassification cost.
GUIDE allows fast computational speed, natural extension
to data sets with categorical variables, and direct detection
of local two-variable interactions. It has four useful
properties: i) negligible selection bias; ii) sensitivity to
curvature and local pairwise interactions between regres-
sor variables; iii) inclusion of categorical predictor
variables; and iv) choice of three roles for each ordered
predictor variable: split selection only, regression model-
ing only, or both.

GUIDE can process a large number of SNPs in one run.
However, it is still not feasible to run the entire data set
with 10 GB and 350,160 SNPs at one time due to
computation limitations (i.e., GUIDE stopped running,
potentially due to a read buffer that is too small). To
overcome this problem, the top 10,000 SNPs associated
with CHD using a chi-square test implemented in PLINK
were analyzed in GUIDE.

Evaluation of classes identified by
GUIDE using GEE model
Current tree algorithms cannot handle dependent data
such as that in the FHS, where family members are
dependent. To accommodate this limitation, study
subjects were treated as independent using GUIDE. The
classes of SNPs identified by GUIDE were re-evaluated
using a generalized estimating equations (GEE) model
with the empirical variance to account for potential
familial correlation.
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Results
Descriptive statistics
Descriptive statistics for the individuals in Generations 1
and 2, as well as those for the combined data set are
shown in Table 1.

Classification tree build by GUIDE
10,000 candidate SNPs pre-selected by PLINK were
analyzed in GUIDE. The final classification tree had a
total of 33 nodes, 17 of which were terminal nodes
(Figure 1). The 16 SNPs that determined the splits are
described in Table 2.

Risk of CHD in each of 17 classes of classification tree
Patients with missing values at one or more of the
16 SNPs were excluded (n = 160). The remaining
2752 patients were assigned into one of the 17 tree
classes based on the splitting criteria. The prevalence of
CHD for each class is presented in Table 3. The results
from GUIDE were then tested in a GEE model that
accounted for familial correlation. The overall test for
a variable with 17 classes was significant (p-value <
0.0001). The prevalence of CHD in Class 16 was the
lowest (0.23%, Table 3). Compared to Class 16, all the
other classes except for Class 288 (prevalence of 1.2%)
had a significantly greater risk of CHD, especially for
Class 7, 13, 19, 73, 35, and 69, with ≥ 20% of the
subjects having CHD (Table 3).

Conclusion
Prevalence of CHD in people older than 45 years was
estimated to be 1.6%-16.8%, depending on age and sex
according to NHANES 1999-2002 data [10]. In the FHS,

about 8% of the first and second generation participants
had CHD. The prevalence of CHD in Class 16
(determined by SNPs rs1894035, rs7955732,
rs2212596, and rs1417507) was the lowest (0.23%),
while the prevalence of CHD in Class 19 (determined by
SNPs rs1894035, rs7955732, rs2212596, and rs41009)
was the highest (27%). The results suggest that indivi-
duals with certain combinations of genotypes are more
resistant to developing CHD, while others are more
susceptible. The SNPs involved in this risk gradient have
not been reported in the CHD literature; they are novel
candidates for future CHD research.

One important limitation of this study is that, like other
machine-learning approaches, the computational capacity
of GUIDE is limited by its inability to handle dependent
data found in family-based studies, although the findings
from GUIDE were replicated in a GEE model that accounts
for familial correlation. Nevertheless, our analysis demon-
strated that the unbiased selection tree algorithm, GUIDE,
could be useful in reducing the number of SNPs in GWAS.
It can be used to study gene-gene interactions associated
with complex diseases, such as CHD. In addition, GUIDE
can use any categorical or quantitative variables to do the
classification (environmental or genetic).

List of abbreviations used
CHD: Coronary heart disease; FHS: Framingham Heart
Study; GAW16: Genetic Analysis Workshop 16; GWAS:
Genome-wide association studies; GEE: Generalized
estimating equations; GUIDE: Generalized, Unbiased,
Interaction Detection and Estimation; SNPs: Single-
nucleotide polymorphisms.

Table 1: Descriptive statistics of selected traits by generation: range, percentage distribution or mean, and standard deviation at
baseline

Traita Generation 1 (n = 356) Generation 2 (n = 2556) Generation comparison Overall (n = 2912)

Range Mean SD Range Mean/% SD Range Mean/% SD

Age 29-54 34.87 3.79 5-59 33.72 9.26 t = 2.31b 5-59 33.86 8.78
Body Mass Index 16.7-36.0 23.81 3.27 13.5-51.1 24.94 4.10 t = -4.95c 13.5-51.1 24.80 4.03
SBP 90-160 123.01 13.45 78-200 119.13 14.24 t = 4.86c 78-200 119.60 14.20
DBP 50-105 77.85 9.35 48-120 77.16 9.97 t = 1.23 48-120 77.25 9.90
Cholesterol 129-339 191.91 37.28 101-388 190.13 36.23 t = 0.68 101-388 190.26 36.30
Cigarettes 0-50 7.58 10.71 0-88 7.60 12.09 t = -0.03 0-88 7.60 12.00
Smoke 0-2 0-2 c2 = 25.97c 0-2

0 44.09% 0 41.27% 0 41.46%
1 5.38% 1 20.01% 1 19.01%
2 50.54% 2 38.72% 2 39.52%

Diabetes 0-1 0-1 c2 = 2.24 0-1
0 92.13% 0 89.59% 0 89.90%
1 7.87% 1 10.41% 1 10.10%

aSBP, systolic blood pressure (mm Hg); DBP, diastolic blood pressure (mm Hg); Cholesterol, fasting × total cholesterol (mg/dl); Cigarettes, number of
cigarettes smoked per day; Smoke, smoking status (0, never; 1, former; 2, current); Diabetes, diabetes status (0, No; 1, Yes).
bp < 0.05.
cp < 0.001.
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Figure 1
Classification tree generated by GUIDE. For each SNP, an additive genetic model with respect to the minor allele was
used. At each intermediate node, a case went to the left child node if and only if the condition was satisfied. The classification
tree generated by GUIDE had 17 terminal nodes (yellow or green). Node numbers were labeled at the terminal nodes. Nodes
in yellow were controls (coded as 1) and nodes in green were cases (coded as 2). There were 228 cases in the sample.
Predicted class and number of errors divided by number of cases are given beneath each terminal node. The current tree in
Figure 1 pruned by ten-fold cross-validation has the smallest misclassification cost.
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