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Abstract

Our aim is to develop methods for mapping genes related to age at onset in general pedigrees. We
propose two score tests, one derived from a gamma frailty model with pairwise likelihood and one
derived from a log-normal frailty model with approximated likelihood around the null random
effect. The score statistics are weighted nonparametric linkage statistics, with weights depending on
the age at onset. These tests are correct under the null hypothesis irrespective of the weight used.
They are simple, robust, computationally fast, and can be applied to large, complex pedigrees. We
apply these methods to simulated data and to the Genetic Analysis Workshop |6 Framingham
Heart Study data set. We investigate the time to the first of three events: hard coronary heart
disease, diabetes, or death from any cause. We use a two-step procedure. In the first step, we
estimate the population parameters under the null hypothesis of no linkage. In the second step, we
apply the score tests, using the population parameters estimated in the first step.

Background

It is well known that heterogeneity results in loss of
statistical power when studying genetic factors of
complex genetic diseases. To deal with heterogeneity
additional data such as covariates (e.g., age at onset,
known genetic factors) are collected. In this paper we are
interested in adjusting linkage for age at onset.

Frailty models have been proposed for age-at-onset
linkage analysis [1-5]. Gamma frailty models are
particularly attractive because the gamma-distributed
random effect can be easily integrated out and it allows
the use of observable marginal survival functions [1-4]. A
drawback of these models is that their corresponding
likelihood becomes very complex for large pedigrees.
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To solve this problem, we propose a score test based on a
composite likelihood [6].

A second model for multivariate survival data is the log-
normal frailty model. Using this model, Pankratz et al.
[5] proposed a likelihood-ratio approach for linkage. In
the spirit of Lebrec and Houwelingen [7], we derive a
robust and simpler score test, using an approximation of
the likelihood around the null random effect.

Methods

Gamma frailty model: pairwise likelihood approach

Let Tj; be the random variable of age at onset for relative j
in family i, i = 1, ..., N. Let (;; d;;) be the observed data
where t;; is the observed age at onset if d;; = 1 and age at
censoring if d;; = 0. The conditional hazard for individual j
in family i, with covariates x; and random effect Z;, is
given by l(tij | Xijs ZU) = )LO(tij | .X‘,])ZU Without loss of
generality, we assume that E [Z] = 1. The baseline hazard
Ao(t) is the hazard for x = 0 and Z = 1. The frailty Z is
decomposed into the sum of independent gamma
distributed effects, namely a linkage effect, a residual
additive effect, and a non-shared environment effect. The
scale parameter is common to all of the effects and is
defined as the sum of the shape parameters. When the
proportion of alleles shared identically by descent (IBD)
for a relative pair (j, k) is known (m;), the marginal
bivariate survival function can be derived from the
additive gamma frailty model [4]. The bivariate survival
function depends on the marginal survival functions, on
the variance of the random effect (6¢?), and on the
pairwise correlation. The correlation pj,(rtj.) = (mj.-Emtjp.) y +
pj. depends on the IBD through the linkage parameter .
Under the null hypothesis (Hy:y = 7 = 0), the correlation
is equal to the correlation in the population (pj,). The
marginal correlation between the i and the j'" individual
is a function of their expected proportion of alleles shared
IBD, pj. = a’Eny, where a” is the portion of the variance
explained by the total additive effect.

We use a retrospective likelihood [4] and, in order to
deal with general pedigrees, we consider a pairwise
likelihood approach [6]. For N families, the correspond-
ing score statistic is a weighted nonparametric linkage
(NPL) statistic

N
>, vec(W;) vec(mwj—En;)
NPL = =L :
£ (1)

\/2 vec(W;)' varg(mi)vec(Wj)
i=1

Here, elements of the weight matrix W are given by
Wi, = dlog L (o) /9pjp , where Ly (y) =P(S;,t, 8,0, | 7, 7)
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is the prospective bivariate likelihood. The operator vec(A)
places the n columns of the m x n matrix A into a vector
of mn x 1. In the case of uncertain IBD status, the variance of
the proportion of allele shared IBD (vary(z;)) can be
estimated by simulations. Note that the classical mean IBD
test is a weighted NPL statistic [Eq. (1)] with weight equal to
Wi, = d; x dj,.

Log-normal frailty model

Let d, Ao, and V = log Z be the n-dimensional vectors of
the disease status, the baseline cumulative hazards at the
observed age, and the normally distributed random
effects of the n members of a particular pedigree,
respectively. The random effect V follows a multivariate
normal distribution with mean zero, and variance-
covariance matrix ¥ with elements X, = Gszjk(r[jk). The
log-likelihood can be approximated by using a second-
order Taylor approximation around V = 0. For small
random effects and known baseline cumulative hazard,
the vector of standardized martingale residuals behaves
as a normal distribution. Integrating over the distribu-
tion of the random effect gives M = (d-Ag)/Ao ~ N(0O, 1),
where X, = X + diag(1/Ay). The score statistic derived
from the retrospective likelihood is a weighted NPL
statistic [Eq. (1)] with weight matrix W = £, 'M(Z, 'M)’-
2, and I, taken in y = 0. In this paper we approximate
the baseline cumulative hazard with the marginal
cumulative hazard.

Materials

Estimation of the population parameters

Three phenotype files were provided: Original Cohort
participants, Offspring participants, and Generation 3
participants. We combined the three files and used this
dataset as a random sample from the population. The
total number of individuals considered was 6879. The
number of disease-free survival events was 644 (248
coronary heart diseases, 385 diabetes, and 98 deaths),
with prevalence around 10%. We estimated the marginal
survival functions stratified by sex using the Kaplan-
Meier estimator. By age 60 years, 20% of males and 10%
of females were affected. Using these estimated survival
functions we fitted a marginal pairwise correlated
gamma frailty model. The sib-sib marginal correlation
was p = 0.46 and the variance estimated by the gamma
frailty models was ¢’ = 0.93. The sib-sib marginal
correlation was p = 0.5 and the variance estimated by a
log-normal frailty model [5] was ¢ ; = 0.43.

Pedigree data preparation

In the Genetic Analysis Workshop (GAW) 16 Framing-
ham Heart Study (FHS) data 765 pedigrees with 2 to 301
genotyped subjects were available. To simplify the IBD
computation, large pedigrees were split into n = 1599
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nuclear families. The number of nuclear families with at
least one affected sibling was n = 488. Only 46 nuclear
families were available with at least two affected siblings.

Single-nucleotide polymorphism (SNP) data selection

The GAW16 Framingham dataset included 550 k SNP
genotype data. Using the nuclear families with at least
one affected individual (2275 individuals), we selected
15 k SNPs informative for linkage. First, markers with
known physical position were selected (497 k). Second,
10 markers per centimorgan with minor allele frequency
larger than 0.15 were considered (37 k). Finally, SNPs
were simulated on 250 sib-pairs in order to select 15 k
SNPs with the highest information content. The infor-
mation content of the final set of SNP was around 85%.

Simulated data

To assess power and type I error rates, we simulated data
using a frailty model with parameter values estimated in
the GAW16 FHS data. The random effect was gamma-
distributed with a mean of one and variance of gé =
0.93. The baseline hazard was derived from the marginal
hazard. The random effect was decomposed into the sum
of three components: one locus-additive genetic effect
(explaining 60% of the variability), one shared environ-
mental effect (explaining 20% of the variability), and
one unshared environmental effect. We simulated
pedigrees with 15 members (Figure 1). Marker data
were simulated far from any disease locus (null hypoth-
esis) and close to the disease locus, which explains all
the additive genetic variance (alternative hypothesis).

Results

Simulated data results

Table 1 shows the type I error rates based on 5000
replications and the power based on 1000 simulations,
for sample size of 300 families with at least two affected
siblings. On simulated data, the proposed methods have
correct type 1 error rates. For our simulation settings,
taking into account age at onset considerably increases
the power to detect linkage. On a moderately sized
pedigrees (15 members), the log-normal approach is
more powerful than the pairwise gamma frailty
approach.

Application to the FHS dataset

We performed a genome-wide linkage analysis using the
unweighted NPL test (mean IBD test) with variance of
the allele shared IBD estimated by simulations [8].
Figure 2 shows the two highest LOD scores (close to
LOD = 2), which are located on chromosomes 4 and 5,
respectively.

http://www.biomedcentral.com/1753-6561/3/S7/S97
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Figure |
Pedigree structure of 15 individuals used for
simulating data.

Table I: Estimates of type | error rates and power

Null hypothesis Alternative hypothesis

Method a=0.05 o=0.0l o = 0.05 o =0.0l
Mean IBD 0.05 0.0l 0.34 0.14
Gamma 0.05 0.0l 0.94 0.80
Log-normal 0.05 0.0l 0.98 0.85
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Figure 2
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Age at onset genetic linkage analysis of GAW 16 FHS dataset. LOD scores on chromosomes 4 (left) and on

chromosome 5 (right).

We applied the proposed methods to the data of these
two chromosomes. The linkage analysis was performed
on all the nuclear families (n = 1599), on the families with
at least one affected siblings (n = 448) and on the subset
of families with at least two affected siblings (n = 45). The
maximum LOD-scores were obtained considering only
families with at least two affected siblings. Figure 2 shows
the results on this subset of families. On chromosome 4,
adjusting for age at onset increases the maximum LOD
score from 2 to 2.5. On chromosome 5, with the proposed
methods the maximum LOD score is in a slightly different
location (10 cM) with respect to the unweighted mean
IBD test (25 cM). Results on chromosome 5 are replicated
on the larger set of families with at least one affected
sibling (data not shown).

Discussion

In this paper we proposed two approaches for age-at-onset
linkage analysis in general pedigrees. We applied the
proposed methods to the GAW16 FHS data in two
suggestive regions identified by the standard NPL method.
The maximum LOD-scores were obtained analyzing only
the set of families with at least two affected siblings. This
can be due to the fact that affected individuals carry most of
the information for linkage. On the densest pedigrees,
adjusting for age at onset slightly increased the evidence for
linkage. However, it is difficult to interpret the results
because of the small number of events.

Because GAW16 FHS families were randomly selected, it
was possible to estimate the marginal information

directly from the data. When marginal information is
known from previous twin (family) studies, the pro-
posed methods can be applied to ascertained families.

For the two identified regions, association analysis in the
presence of linkage may be the next step. The proposed
models can be easily extended to study association in the
presence of linkage by including the genotype of the
siblings as a covariate.

In this paper we computed IBD probabilities using
MERLIN and we estimated the variance of the allele
shared IBD using simulations [8]. Because this software
can deal only with small to moderately large families, we
split large families into nuclear families. An alternative
approach is to estimate IBD probabilities using Markov-
chain Monte Carlo methods, which now provide this
information for general pedigrees. Sampled inheritance
vectors can also be used to estimate the variance of the
allele shared IBD in the denominator of the score
statistic.

Software to apply the proposed methods is freely
available [9].

Conclusion

We proposed two new score tests for age of onset linkage
analysis. Both methods are simple and can be applied to
general pedigrees. Simulations showed that the proposed
methods outperform the traditional affected-only NPL
method. On the application to the GAW16 FHS data,
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adjusting for age at onset slightly increased the interest-
ing linkage peaks.
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