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Abstract

Background: We applied a range of genome-wide association (GWA) methods to map quantitative trait loci (QTL)
in the simulated dataset provided by the QTLMAS2009 workshop to derive a comprehensive set of results. A
Gompertz curve was modelled on the yield data and showed good predictive properties. QTL analyses were done
on the raw measurements and on the individual parameters of the Gompertz curve and its predicted growth for
each interval. Half-sib and variance component linkage analysis revealed QTL with different modes of inheritance
but with low resolution. This was complemented by association studies using single markers or haplotypes, and
additive, dominance, parent-of-origin and epistatic QTL effects. All association analyses were done on phenotypes
pre-corrected for pedigree effects. These methods detected QTL positions with high concordance to each other
and with greater refinement of the linkage signals. Two-locus interaction analysis detected no epistatic pairs of
QTL. Overall, using stringent thresholds we identified QTL regions using linkage analyses, corroborated by 6
individual SNPs with significant effects as well as two putatively imprinted SNPs.

Conclusions: We obtained consistent results across a combination of intra- and inter- family based methods using
flexible linear models to evaluate a variety of models. The Gompertz curve fitted the data really well, and provided
complementary information on the detected QTL. Retrospective comparisons of the results with actual data
simulated showed that best results were obtained by including both yield and the parameters from the Gompertz
curve despite the data being simulated using a logistic function.

Background
The QTLMAS2009 data is structured in families and
allows both linkage and association approaches to be
evaluated. Here we describe a comprehensive set of ana-
lyses to detect QTL in the simulated population in
order to compare routinely used methods of linkage and
association analysis. The half sib method is fast and
robust but ignores family information other than par-
ent-offspring relationship being analysed. The variance
component analysis is computationally more intensive
but models all relationships and is easily extended to
non-additive scenarios. Direct association of marker

genotypes is computationally fast but requires denser
markers and is more susceptible to data stratification.
Jointly, these analyses represent a number of models
that are expected to give good insight into the genetic
architecture of the trait.

Methods
Treatment of phenotypic data
All analyses used the simulated data on 1000 offspring
from 20 dams, nested in 5 sire families. Univariate ana-
lyses in ASREML [1] were used to estimate heritabilities
at each of the time points. The Gompertz growth func-
tion, modelling weight over time, was fitted across all
trait data using nonlinear regression in SAS. The follow-
ing parameterization of the Gompertz equation was
used: y(t) = Ae{-e[Be(C-t)/A]} , where:
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y(t) = yield at time t; A = final yield; B = maximum
growth rate; C = age at maximum growth rate.
The Gompertz function was then fitted to trait infor-

mation for each individual separately and individual esti-
mates of the model parameters A, B, C were extracted.
Subsequently, parameter estimates for each individual
were employed in the model equation and its derivative
to predict yield and growth rate (yield per day), respec-
tively, at the 5 time points for which trait information
was available (0 to 530) and at time 600.

Half-sib QTL analyses
QTL analyses of the simulated phenotypes, the esti-
mated Gompertz parameters A, B, and C and the pre-
dicted growth rates at the given time points and at time
600 were conducted using the half-sib QTL analysis, as
described by Knott et al . [2] and implemented in the
web-based software GridQTL [3]. All half- sib analyses
were performed for paternal and maternal half-sib
families. Empirical thresholds were obtained by permu-
tation tests using 2000 permutations per chromosome.
From these chromosome-wide thresholds the following
significance levels were derived: chromosome-wide and
genome-wide 5% and 1%. QTLs detected at the 1%
chromosome-wide significance level were included in
the one-QTL model as cofactors. For chromosomes
where a single QTL had been identified a two-QTL
model was evaluated and the best fitted two-QTL model
obtained tested against the best one-QTL model.

Variance component QTL analyses
A variance component approach was used to look for
additive, dominant and imprinted QTL. Following a
two-step approach [4], identical-by-descent (IBD) coeffi-
cients were estimated for all relationships in the pedi-
gree with the recursive method of Pong-Wong et al,[5].
Variance components for each model were estimated
using ASReml [1]. The following models were evaluated
(1) y = Xb + Zu + e (null or polygenic)
(2) y = Xb + Zu + Za + e (additive QTL)
(3) y = Xb + Zu + Za + Zd + e (additive QTL +

dominant QTL)
(4) y = Xb + Zu + Zmm + Zpp + e (maternal QTL +

paternal QTL)
where y is a vector of phenotypic observations, b is a

vector of fixed effects, u, a, d, m, p and e are vectors
of random additive polygenic effects, additive and
dominance QTL effects, maternal and paternal QTL
effects and residuals, respectively. X, Z, W, Zm, and
Zp are incidence matrices relating to fixed and random
genetic, maternally expressed, and paternally expressed
QTL effects, respectively. Variances for polygenic and
QTL effects are distributed as follows: var(u) =As 2

a,
Var(a) = Gs2

q, Var(d) = Ds2
d, Var(m) = GMs2

m, Var

(p) = GPs
2
p, var(e) = Is2

e. A is the standard additive
relationship matrix based on pedigree data only and
the relationship matrices. The G, GM, GP and D are
the appropriate relationship matrices used to model
the additive, maternal, paternal and dominant QTL
effects at each position tested as outlined by Liu et al,
[6].
The logarithm of the likelihood ratio test statistic was

used to test the presence of a QTL at given locations
along the genome. A nominal c21 or c22 was used
depending on whether one or two extra parameters
were estimated. This has been shown to be conservative
as the theoretical distribution is a mixture between 0
and c21 or c

2
1 and c22, respectively[7].

Models (3) vs. (2) were compared to detect dominant
effects. Models (4) vs. (1) were compared to test for an
additive QTL whilst allowing the maternal and paternal
components to vary and (4) vs (2) to test whether the
additive effect was better explained by allowing different
parental contributions.

Association studies
We first tested the level of linkage disequilibrium (LD)
using Haploview [8]. For association analyses, we used
the simulated phenotypes as well as the Gompertz para-
meters A, B, C (results not shown). Association analyses
were performed using the GRAMMAR approach [10],
which comprises two stages. First, ASReml is used to
correct each phenotype for polygenic effects; and sec-
ond, additive, dominant and imprinting models were
sequentially fitted against each marker on the residual
phenotypic values with an ANOVA test. In the case of a
better fit of the imprinting model for a given SNP, we
generated a 5% significance level by performing 2000
randomizations where we randomly swapped the mater-
nal and paternal allelic origin for half the offspring. An
empirical genome-wide threshold of 5% was generated
from 1,000 permutations. We also applied haplotype
analyses and exhaustive epistatic searches, but these
revealed no additional QTL.

Results and discussion
Descriptive statistics
The estimated heritability was ~ 0.50 for all time
points varying between 0.46 and 0.50. The heritabilities
for the Gompertz parameters A, B and C were 0.45,
0.48 and 0.26, respectively. The LD between adjacent
SNP pairs was generally low. Ostensibly, 453 markers
spanning a genetic distance of 5 Morgans appeared to
be sparse, and the pattern of LD reflects this. Chromo-
somes 1 to 4 had similar distributions of r2 values, the
mean between adjacent markers being ~0.15, but chro-
mosome 5 appeared to have much lower LD (Addi-
tional file 1).
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Linkage analyses
The results of the half-sib analyses are summarised in
additional file 2 and curves for all half-sib analyses are
presented in additional file 3. Genome-wide significant
QTL were identified for all time points and all chromo-
somes. A QTL on chromosome 1 (43cM) was highly
significant for growth rate and yield across all times
from both sire and dam half-sib analyses. On chromo-
some 2, the sire analysis identified 3 significant QTL
while the dam analysis revealed two QTL (Additional
file 2) On chromosome 3, two QTL were detected from
the sire half-sib analysis while the dam analysis showed
evidence for two QTL (Additional file 2) The sire half-
sib regression resulted in one QTL on chromosome 4
(78-79cM) which was significant at early times. On
chromosome 4, the dam analysis identified two QTL at
5-8cM and 86cM for yield times 0-132. Finally, from the
sire analysis a QTL on chromosome 5 was significant at
75-76cM for growth rate from time 132 onward and
yield for time points 265-530, whereas the dam regres-
sion revealed a QTL (99cM) for yield and growth rate at
early times. Major QTL on chromosome 1 (38-44 cM)
from both parental analyses and paternally inherited
ones on chromosomes 2 and 5 were detected for the
Gompertz parameters for final yield (A) and maximum
growth rate (B).
The variance component analyses are summarized in

Table 1, and depicted in additional file 4. Because the
VC analyses model QTL from both parents simulta-
neously, the results reflect a mix between the two half-
sib analyses. The VC analyses confirm the highly signifi-
cant QTL on chromosome 1, explaining around 35% of
the variance and acting additively. The parent-of-origin
specific models that allow for imprinting show potential
imprinting effect for chromosomes 2, 3, and 4 (Table 1).
These are in line with the observed differences for the
alternative half-sib models. There is also indication of
dominant QTL on chromosomes 4 and 5 at 75 and
30cM, respectively, affecting time 397.

Association analyses using GRAMMAR
Figure 1 shows the results of fitting an additive model to
all individual SNPs over times. This revealed six gen-
ome-wide significant SNPs affecting the five yield traits
(Table 2, Additional file 5). The major SNP effect was at
44.5 cM (SNP 37) on chromosome 1, explaining up to
10% of phenotypic variation in yield. Most other signifi-
cant SNPs had much more modest effects, explaining
between 1 and 3 % of phenotypic variation. A parent-of-
origin specific model revealed two additional genome-
wide significant QTL. The first one (SNP 53 at 56.6 cM)
was paternally expressed. For this SNP, the empirical p
value was 0.03. Two out of the 5 sires had both alleles
for the SNP. The contrast effect of Aa vs. aA was

assessed across the 2 sires and was significant (p<0001,
N=194) with the most important effect on late growth.
Another parent-of origin QTL, which was expressed
paternally, was detected on chromosome 2 (SNP 138 at
48.5 cM). For the SNP 138, the empirical p value was
about 0.0005. Only one of the 5 sires had both alleles.
The within family contrast effect was significant (p=001,
N=93) with the most important effect on early growth.
The different analysis models for selected SNPs are
compared in additional file 6.

Overall comparison
The linkage analyses give a single QTL on chromosome
1, up to 3 QTL regions on chromosomes 2, 3, and 5 and
2 QTL regions on chromosome 4 (Additional file 1 and
Table 1). There are some slightly more speculative QTL
with potential imprinting effects on chromosomes 2, 3,
and 4 but these require further scrutiny. The association
study shows convincing evidence for 6 SNPs, that all
coincide with QTL regions. There are two putatively
imprinted SNPs, but these show little concordance with
the putative imprinted regions from the VC Analyses.

Epilogue
The retrospective comparison of the performance of the
methods used here with the simulated data is shown in

Table 1 Summary of most significant QTL results for
yield from variance component analyses.

QTL Time % variance

Model Chromosome Position LRT Point explained

(cM)1 by QTL

Additive 1 43 135.6** 530 35

Additive 2 5 25.42** 530 6.4

Additive 2 38 24.1** 397 7.3

Additive 3 17 14.05** 0 5.03

Additive 3 93 8.6** 265 4.92

Additive 4 37 15.61** 0 5.66

Additive 4 77 27.85** 0 7.16

Additive 5 73 11.98** 530 5.0

Dominant2 4 75 7.32** 397 2.3/5.5

Dominant2 5 30 2.44 397 0/3.4

Imprinting3 2 9 4.5* 132 0/5.5

Imprinting3 2 62 3.4 530 0/4.6

Imprinting3 3 76 3.0 265 2.6/0

Imprinting3 3 76 3.6 397 2.4/0

Imprinting3 4 9 8.3** 0 6.2/0
1QTL position is defined relative to the first marker (SNP) present in the
genetic map for each chromosome; first marker positioned at 1 cM.
2For dominant QTL, the LRT is the test of model 3) against model 2). The
variance explained by the QTL is given as additive /dominance
3 For imprinted QTL, the LRT is the test of model 4) against model 2). The
variance explained by the QTL is given as maternal /paternal

*/** Significance threshold P < 0.05/0.01 assuming the null test statistic
follows a c21 distribution
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Figure 1 Profile of association across all chromosomes over time
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additional file 7. Because the Gompertz growth curve
fitted the yields well, half-sib regression analysis of the
Gompertz model descriptors performed better than all
other methods employed, even though the actual QTL
were simulated for the 3 parameters of the logistic func-
tion. The half-sib, association and VC analyses of yield
data detected 12, 6 and 10 out of the 18 simulated QTL
respectively with 1, 2 and 5 false positives. Analysis of
the growth model descriptors (growth rate and the
Gompertz model parameters) resulted in 15 QTL with
no false positives. The association analysis tended to
underestimate the variance explained by the QTL with
the VC analysis giving the most accurate estimation of
variance explained (S2). Comparison of the methods
clearly demonstrates the risks of false detection of non-
additive segregation. The imprinted QTL falsely
detected by the VC and association analyses can be
explained by segregation of QTL, where only a limited
number of parents are heterozygous for the QTL. As a
result, the QTL effect may appear to come from the
parents of a single sex only. The apparent parental ori-
gin differences are clearly illustrated by the differences
in half-sib regression results (Additional files 2 and 3).
The dominant effects, however, are more difficult to
interpret, perhaps coming from higher yield within a
particular full sib family thus masquerading as domi-
nance. Results from these extended models provide a
valuable insight and perhaps serve as a warning on the
effects of data structure on results from non additive
models.

Additional file 1: LD across chromosomes
[ http://www.biomedcentral.com/content/supplementary/1753-6561-4-S1-
S11-S1.pdf ]

Additional file 2: Summary of QTL results from half-sib analyses.
[ http://www.biomedcentral.com/content/supplementary/1753-6561-4-S1-
S11-S2.pdf ]

Additional file 3: QTL profiles from all Half-Sib analyses.
[ http://www.biomedcentral.com/content/supplementary/1753-6561-4-S1-
S11-S3.pdf ]

Additional file 4: QTL profiles from all VC analyses
[ http://www.biomedcentral.com/content/supplementary/1753-6561-4-S1-
S11-S4.pdf ]

Additional file 5: The changes of QTL heritability over time for the
6 main SNPs.
[ http://www.biomedcentral.com/content/supplementary/1753-6561-4-S1-
S11-S5.pdf ]

Additional file 6: Model comparisons for selected SNPs.
[ http://www.biomedcentral.com/content/supplementary/1753-6561-4-S1-
S11-S6.pdf ]

Additional file 7: Performance of different analyses in estimating
the simulated QTL for the QTL-MAS workshop 2009.
[ http://www.biomedcentral.com/content/supplementary/1753-6561-4-S1-
S11-S7.pdf ]

List of abbreviations used
QTL: Quantitative Trait Locus; LD: Linkage Disequilibrium; GRAMMAR:
Genome- wide Rapid Analysis using Mixed Models And Regression

Acknowledgements
This work has made use of the resources provided by the Edinburgh
Compute and Data Facility (ECDF) (http://www.ecdf.ed.ac.uk/). The ECDF is
partially supported by the eDIKT initiative. (http://www.edikt.org.). All authors
would like to thank BBSRC for their financial support through an Institute
Strategic Programme Grant to Roslin Institute. GH1 acknowledges the
GENACT Project while JN and BL acknowledge the SABRETRAIN project (EC
Contract number MEST-CT-2005- 020558), both funded by the Marie Curie
Host Fellowships for Early Stage Research Training. SR and DJK acknowledge
the EC-funded Integrated Project SABRE (EC contract number FOOD-CT-
2006-01625) and the BBSRC supported GridQTL project.
This article has been published as part of BMC Proceedings Volume 4
Supplement 1, 2009: Proceedings of 13th European workshop on QTL
mapping and marker assisted selection.
The full contents of the supplement are available online at
http://www.biomedcentral.com/1753-6561/4?issue=S1.

Authors’ contributions
GH1, GH2, RL, BL, JN, and SR carried out the analyses and contributed parts
of the manuscript. DJK coordinated the analyses and drafted the overall
manuscript. All authors have read and contributed to the final text of the
manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 31 March 2010

Table 2 Most significant associations with single SNPs.

SNP number Time Pointa % variance

Model Chromosome (cM) -log10P explained by QTLa

Additive 1 37 (44.5) 15.0-22.6 0-530 6.7-9.9

Additive 2 98 (3.6) 4.0-6.1 132-530 1.8-2.8

Additive 2 174 (88.3) 3.3-4.6 132-530 1.3-1.6

Additive 3 222 (31.1) 3.0-5.2 0-265 0.9-1.77

Additive 4 338 (71.7) 3.0-7.3 0-530 1.0-2.8

Dominant 4 315 (38.8) 4.4-5.1 0-530 1.7-2.0

Imprinting 1 53 (55.6) 3.9 530 1.6

Imprinting 2 138 (48.5) 3.6 0 1.5
a For SNPs with nominal P < 0.001
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