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Abstract

Background: The success of genome-wide selection (GS) approaches will depend crucially on the availability of
efficient and easy-to-use computational tools. Therefore, approaches that can be implemented using mixed models
hold particular promise and deserve detailed study. A particular class of mixed models suitable for GS is given by
geostatistical mixed models, when genetic distance is treated analogously to spatial distance in geostatistics.

Methods: We consider various spatial mixed models for use in GS. The analyses presented for the QTL-MAS 2009
dataset pay particular attention to the modelling of residual errors as well as of polygenetic effects.

Results: It is shown that geostatistical models are viable alternatives to ridge regression, one of the common
approaches to GS. Correlations between genome-wide estimated breeding values and true breeding values were
between 0.879 and 0.889. In the example considered, we did not find a large effect of the residual error variance
modelling, largely because error variances were very small. A variance components model reflecting the pedigree
of the crosses did not provide an improved fit.

Conclusions: We conclude that geostatistical models deserve further study as a tool to GS that is easily
implemented in a mixed model package.

Background
Genome-wide selection (GS) is a marker-based method
that predicts breeding values on the basis of a large
number of molecular markers, which typically cover the
entire genome [1]. The idea is to estimate the effects of
all genes or chromosomal segments simultaneously and
to integrate these estimates in order to predict the total
breeding value.
One basic approach for GS is ridge regression (RR) [1].

An interesting alternative to RR is to use spatial models
[2] to model genetic correlation among relatives [3].
This study compares RR models and spatial models

for estimating genome-wide breeding values for the
common dataset provided by the 13th QTL-MAS work-
shop. The focus is on methods that can be easily

implemented using a standard mixed model package
with facilities for spatial covariance structures.

Methods
Data
The dataset was simulated as part of the 13th QTL-MAS
workshop (see [4] for details). Phenotypes of 1000 of 2025
individuals were recorded at five different times (0, 132,
265, 397 and 530), so there is a series of five repeated mea-
surements for each phenotyped individual. Breeding values
for the non-phenotyped individuals were to be predicted
for time=600, which constitutes an extrapolation.

Extrapolation for time=600
Careful inspection of the data revealed that a logistic
model
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would give a reasonable fit to the data, where yit is the
trait value of the i-th individual at time t (t = 0, 132,
256, 397, 530 or 600) and ai, bi, gi are parameters per-
taining to the i-th individual. Observed data were mod-
elled as yit = E( yit ) + εit, assuming that errors εit are
independent and have constant variance. We initially
fitted this model separately for each individual. Based on
this analysis, we then obtained a pooled residual var-
iance estimate from all individuals as  2 = RSS /2n,
where RSS is the pooled residual sum of squares and n
is the number of phenotyped individuals. Each indivi-
dual contributed two error degrees of freedom. Next,
nonlinear regressions were re-run for all phenotyped
individuals to predict yi600, fixing the residual variance
at the pooled estimate. Along with predictions the stan-
dard error was determined. The error variance of pre-
dicted values was estimated as the square of the
standard error. This variance was subsequently regarded
as a known within-individual error variance for mixed
model analyses.

Marker scoring
The marker covariate zik for the i-th genotype and the
k-th marker for biallelic markers with alleles A1 and A2

was set to 1 for A1A1, -1 for A2A2 and 0 for A1A2 and
A2A1. Covariates were stored in a matrix Z = {zik }.

Model
The approach to GS closely follows [2]. Our basic model
was

y y h ei i i600   

where µ is an intercept, hi is the total genotypic effect
of the i-th individual and ei is a residual error. In most
cases the total genotypic variance can not be explained
by the markers. Thus there is an unexplained part left.
We think that this part should be modelled by a poly-
genic effect. Therefore the total genotypic effect was
partitioned into a component explained by the markers
(gi) and a polygenic component (vi) not captured by the
markers. Thus, the total genotypic effect hi was parti-
tioned as:

h g vi i i 

[2]. There were two options regarding the model for
var(ei), the variance of ei. Either we fixed var(ei) at the
squared standard errors of predictions of yi600 obtained
from nonlinear regression and assumed heterogeneous
residual variance, or we pooled ei with vi and thus

implicitly included var(ei) in the variance structure for vi
which is defined as var(v) = I  v

2 , where  v
2 is the var-

iance component for polygenic effects. It is common to
model the polygenic effect by the relationship matrix.
But in this case we assumed independent polygenic
effects, because no pedigree information on the parents
was available. It must be stressed that var(ei) is strictly a
within-individual error variance component that does
not comprise between-individual error components. In
the present application, these latter error components
are effectively confounded with the polygenic effect vi.
By contrast, in plant breeding applications, field replica-
tion would allow a separate assessment of between-indi-
vidual error components. It is conjectured that explicit
modelling of such an error component would be of ben-
efit [2], because it is possible that the model captures
part of the variance among individuals, which is nonge-
netic. For this reason it is advisable to generally obtain
an independent estimate of error (as in [5]).
We considered different models for the variance of g’ =

(g1, g2,..., gG), conditionally on the markers Z = {zik }. All
conditional models were of the form

var  ( | )g Z   u
2

for some matrix Γ that is a function of Z and  u
2 is

a variance component.”. The models that were used
are identical to those used in [2]. Under the mixed
model for RR the matrix Γ =ZZ’ was used and the
penalty parameter depends on the variance compo-
nents through l2 =  e

2 /  u
2 , where  e

2 is the residual
variance [2]. In addition, different spatial models were
used. Under these models, the genetic correlation is
expressed as

Γ = {f(dii’)},

where dii’ is the Euclidean distance of genotypes i and
i’, defined as dii’=||zi – zi’ ||, with z’i equal to the i-th
row of Z, and f(d) is some monotonically decreasing
function of d. There are different options for the func-
tion f(d), including those shown in Table 1 [6]. We used
all mentioned models and an independent model where
 u

2 is omitted. It is noteworthy that the quadratic model
is equivalent to the RR [2].
We also considered an extended model

var  ( | )h Z I    u v
2 2 , where Ω represents the covariance

due to simple random effects, i.e.,

   V V Vf m c     f m c
2 2 2 , where  f

2 , m
2 and  c

2 are the

variance components for random effects of father and
mother of crosses and of the crosses themselves, respec-
tively, and Vf , Vm and Vc are corresponding symmetric

matrices of known constants and  v
2 are the variance
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component for random effects of the individuals. In this
case the polygenic variance is defined as var( )v I   v

2

where v1= (v1,v2,...,vG). If Ω = 0 the model is equal to
models with independent polygenic effects. When fitting
the extended model we did not fix var(ei) at the squared
standard errors of predictions of yi600, therefore var(ei)

is pooled with  v
2 .

For each fitted model we obtained BLUPs of µ + hi
corresponding to genome-wide estimated breeding
values (GEBV). For non-phenotyped individuals vi  0 in
the case of models with independent polygenic effects
and vi  0 for the extended model when Ω ≠ 0. The
Pearson correlation between the GEBV and the fitted
values yi600 were calculated. In addition, the Akaike
Information Criterion (AIC) was recorded. Small values
of AIC indicated a preferable model.
After the 13th QTL-MAS workshop the organizers

reported the true breeding values (TBV). The TBV of
the non-phenotyped individuals were compared to the
GEBV by the Pearson correlation.

Software
The nonlinear regression was done by the NLMIXED
procedure of the SAS System, while all mixed models
were fitted by the REML method using the MIXED pro-
cedure of SAS.

Results
Analysis without fixing the residual variance
First the models were fitted without fixing the residual
variance (Table 2). The RR and spatial methods give
better fits than the model with independent genotypic
effects. The AIC values of the RR and the spatial models
are relatively close. The spatial linear, power, exponen-
tial and spherical models have a smaller residual var-
iance than the RR/quadratic spatial model and Gaussian
spatial model. The latter models show a higher correla-
tion of GEBV with TBV (Table 2). Overall, the RR/
quadratic model has the best AIC value, but this model
shows a relatively low correlation of GEBV and yi600.

The fits from the extended models that include Ω are
shown in Table 3. The AIC values are a little bit higher
than in the models without considering the effects of
the parents, the independent model being an exception.
The ranking of genotypes remains unaltered. Only when
 u

2  0 do we find a non-zero variance for mother
effects in Ω . Throughout, there is a non-zero estimate
for the variance of father effects ( f

2 ), while the variance
for cross effects ( c

2 ) is zero. The correlations of GEBV
with TBV are almost the same as those when Ω was
omitted (Table 3).

Analysis with fixing the residual variance
The results of the models with a fixed residual variance
at the squared standard errors of predictions of yi600
obtained from nonlinear regression are shown in
Table 4. The AIC values show that the models with an
independent estimate of error var(ei) have an equal or
nearly equal fit compared to the models without fixing
the residual variance (Table 4). The correlations of
GEBV with TBV are almost the same as those without
fixing the residual variance (Table 4). Overall, the RR/
quadratic model had the best AIC value as was the case
when var(ei) was not fixed.

Discussion
There are only minor differences of the AIC values
between RR and spatial models, like in [2]. Thus, some
of the spatial models are viable alternatives to RR.
Among the spatial models, the Gaussian model gave
almost the same fit as RR. This can be explained by a
Taylor expansion argument. The correlation function
under the Gaussian model is exp(– d2 / θ2). When θ is

Table 1 Genotypic covariance models of the form
Γ = {f(dii′)}, where d is the Euclidean distance
computed from marker data and θ is a parameter.

Name Equation

Linear f d d   1 

Quadratic f d d   1 2

Power f d d( )  

Exponential f d d( ) exp  
Gaussian f d d( ) exp  2 2



Spherical f d d d d( )     1 3
2 2

3

3 


Table 2 Model fits of different genetic covariance models
and Pearson correlation between GEBV and fitted value
and between GEBV and true breeding value (TBV).

Residual Correlation

Model for gi AIC variance§ θ Fitted value
$

TBV#

Independent 6789.1 51.89

Ridge Regression
(RR)

6418.5 28.17 0.734 0.889

Spatial models

Linear 6425.8 12.00 0.974 0.880

Quadratic 6418.5 28.17 0.734 0.889

Power 6428.9 12.16 0.99 0.974 0.879

Exponential 6428.5 11.48 216.52 0.977 0.879

Gaussian 6420.5 28.08 124.59 0.737 0.889

Spherical 6427.8 11.96 959.97 0.974 0.880
§ The error variance was pooled with that for vi into a single residual variance.
$ The Pearson correlation between GEBV and fitted values (yi600) of the
phenotyped individuals.
# The Pearson correlation between GEBV and true breeding values (TBV) of
the non- phenotyped individuals.
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large, then the exponent is close to zero and to first
order we have exp / /   d d2 2 21  , so the Gaussian
model approaches the RR/quadratic model in this case,
but when θ is small we expect different fits. It is note-
worthy that the Gaussian model is essentially equivalent
to reproducing kernel Hilbert spaces regression as pro-
posed by [7] and also to least squares support vector
machine (LS-SVM) regression [8]. It may be conjectured
that when inheritance is not merely additive it may be
of particular importance to model the genetic covariance
by some non-linear spatial model such as an exponential
or a Gaussian model.

In this study we have used AIC defined as AIC = -2 log
(likelihood) + 2 * number of parameters as printed by
mixed model packages such as the MIXED procedure of
SAS. The models with the lowest AIC values showed the
highest correlation between the GEBV and TBV. But the
correlation between the model ranks produced by AIC
and by the correlation between GEBV and TBV is not per-
fect. For smoothing methods modifications of the AIC
have been proposed (e.g. corrected AIC (AICC: [9]) and
different other criteria (e.g. generalized cross-validation
(GCV: [10]). The main difference to the AIC is that the
complexity of the fitted model is calculated as the trace of
the so-called smoother matrix tr( Sl ) described in [11],
which relates to the effective degrees of freedom of the fit.
It is important to realize that GS may be regarded as a
smoothing exercise that replaces observed data (adjusted
genotype means) by smoothed fitted values. Thus, model
selection criteria developed for smoothing can be a useful
extension for selecting a preferable model in GS.
The comparison between GEBV and phenotypes is not

a good indictor for accuracy of breeding values, when all
individuals are involved in the prediction and no inde-
pendent validation set is left (Tables 2, 3 and 4). Cross-
validation is one option to avoid this problem. The
leave-one-out cross-validation procedure is equivalent to
the cross-validation criterion, which is related to other
selection criteria (AIC, AICC and GCV) [12]. Therefore
one idea is to replace the cross-validation procedure by
model selection criteria, which would entail a consider-
able saving of computing time.
In the present study the data were simulated without

polygenic effects. Nevertheless, it is prudent to cater for
the case that the total genotypic variance can not be
fully explained by the markers alone. We think that this

Table 3 Model fits of different genetic covariance models with random effects for father and mother of crosses and
for the crosses themselves and Pearson correlation between GEBV and fitted value and between GEBV and true
breeding value (TBV).

Residual Father& Mother& Correlation

Model for gi AIC variance§ θ  f
2 m

2 Fitted value$ TBV#

Independent 6605.1 40.77 7.16 6.16 0.481 0.649

Ridge Regression (RR) 6420.2 28.18 0.61 0 0.734 0.889

Spatial models

Linear 6427.2 12.17 1.08 0 0.973 0.879

Quadratic 6420.2 28.18 0.61 0 0.734 0.889

Power 6430.3 12.35 0.99 1.20 0 0.973 0.878

Exponential 6429.9 11.62 208.63 1.11 0 0.976 0.878

Gaussian 6422.2 28.07 118.46 0.62 0 0.737 0.889

Spherical 6429.2 12.17 802.96 1.09 0 0.973 0.879
§ The error variance was pooled with that for vi into a single residual variance.
& The estimate of the variance for cross effects was zero in all models.
$ The Pearson correlation between GEBV and fitted values (yi600) of the phenotyped individuals.
# The Pearson correlation between GEBV and true breeding values (TBV) of the non- phenotyped individuals.

Table 4 Model fits of different genetic covariance
models. Residual variance var(ei) fixed at value of
squared standard error of yi600 and Pearson correlation
between GEBV and fitted value and between GEBV and
true breeding value (TBV).

Polygenic Correlation

Model for gi AIC variance θ Fitted value
$

TBV#

Independent 6789.1 51.80

Ridge Regression
(RR)

6418.5 28.09 0.734 0.889

Spatial models

Linear 6425.8 11.88 0.974 0.880

Quadratic 6418.5 28.10 0.734 0.889

Power 6428.8 10.38 0.99 0.981 0.878

Exponential 6428.2 11.17 627.76 0.977 0.879

Gaussian 6420.5 27.98 124.10 0.737 0.889

Spherical 6427.8 11.87 959.00 0.975 0.880
$ The Pearson correlation between GEBV and fitted values (yi600) of the
phenotyped individuals.
# The Pearson correlation between GEBV and true breeding values (TBV) of
the non- phenotyped individuals.
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unexplained part should be modelled by a polygenic
effect.
We modelled the polygenic effect as independent.

Alternatively, one can assume that the polygenic effect
is correlated due to the pedigree. We modelled the pedi-
gree of the crosses by variance components, however,
reflecting the pedigree did not provide an improved fit
in the present case.
We also think it is important to separate the polygenic

effect from error in order to avoid overfitting [2]. In the
present study, however, fixing the residual variance did
not have much of an effect because essentially we only
had a within-individual error variance estimate. This
ignored between-individual error variance, which is
therefore expected to be confounded with the variance
component for polygenic effects ( v

2 ). In plant breeding
trials, where replication is available, one can separate
polygenic effects from non-genetic between-individual
errors. We expect that such separation will be crucial to
the success of GS approaches in plant breeding.

Conclusions
Our study has shown that geostatistical models are
viable alternatives to RR that deserve further study as a
tool to GS. With respect to our analyses for the QTL-
MAS 2009 dataset, however, we prefer the RR/quadratic
model without fixed residual variance for predicting
GEBV.
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