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Background: We have previously demonstrated an approach for efficient computation of genotype probabilities,
and more generally probabilities of allele inheritance in inbred as well as outbred populations. That work also
included an extension for haplotype inference, or phasing, using Hidden Markov Models. Computational phasing of
multi-thousand marker datasets has not become common as of yet. In this communication, we further investigate
the method presented earlier for such problems, in a multi-generational dataset simulated for QTL detection.

Results: When analyzing the dataset simulated for the 14th QTLMAS workshop, the phasing produced showed
zero deviations compared to original simulated phase in the founder generation. In total, 99.93% of all markers
were correctly phased. 97.68% of the individuals were correct in all markers over all 5 simulated chromosomes.
Results were produced over a weekend on a small computational cluster. The specific algorithmic adaptations

needed for the Markov model training approach in order to reach convergence are described.

Conclusions: Our method provides efficient, near-perfect haplotype inference allowing the determination of
completely phased genomes in dense pedigrees. These developments are of special value for applications where
marker alleles are not corresponding directly to QTL alleles, thus necessitating tracking of allele origin, and in
complex multi-generational crosses. The cnF2freq codebase, which is in a current state of active development, is

Background

Inference of haplotypes, or phasing, from genotype and
pedigree data can be useful in several ways. For any kind
of traditional linkage analysis, including QTL mapping,
knowledge of haplotypes can help in producing a more
correct analysis of linkage and thus higher statistical
power and more well-defined positions. Knowledge of
phase over the genome is also critical in an epigenetic con-
text regarding sex-specific imprinting. Most of the
research in reconstructing haplotypes from unphased data,
like application of the EM algorithm [1], Clark’s algorithm
[2], and certain Bayesian methods [3] were designed for
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cases where no pedigrees are available, and in some cases
also with an assumption of Hardy-Weinberg equilibrium.
Approaches based on MCMC (Markov Chain Monte
Carlo) methods can integrate general pedigree informa-
tion, but do so by sampling specific realisations, slowly
improving the total haplotype solution. All these
approaches tend to be prohibitively computationally
expensive when the number of markers or individuals
grows large. When pedigree data is known, rule-based
heuristical approaches are also commonly suggested.
These provide excellent performance, but will frequently
fail to phase all positions, either leaving markers unphased,
or selecting an incorrect resolution [4].

In this communication, we focus on reconstruction of
haplotypes in experimental crosses of different designs.
In such data, it can be expected that pedigree
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information is available and reliable. Furthermore, a
large number of siblings (half or full) is generally avail-
able, making the direct tracking of recombination events
an attractive way to infer haplotypes. A highly efficient
method, with excellent convergence properties thanks to
a specially adapted optimisation algorithm, is presented.
This method has previously been briefly discussed with
application to an earlier QTL-MAS workshop dataset
[5] where it was shown to surpass the phasing results
produced with other methods [6].

Methods

A Hidden Markov Model (HMM) is defined by its states
and transitions between states [7]. The hidden property
is corresponding to the fact that states are not observed.
Rather, emitted symbols in an alphabet are observed
and those are related to the states according to some
function.

Review of Hidden Markov Models for intercross
genotyping

Our haplotyping HMM approach is quite similar to the
genotyping approach described for outbred lines in [5].
A first overview of the extension for haplotyping is also
found there. A more formal description of the corre-
sponding, slightly simpler, case for genotype probabil-
ities in inbred lines can be found in [8], corresponding
to the implementation found in R/qtl [9].

The state space in our model consists of a set of bin-
ary flags, determining the current phase in some indivi-
duals. In the case of finding genotype probabilities in an
F, cross, those flags represent the two F; parent indivi-
duals, where the meiosis in each individual can transmit
an allele originating from either the grandfather or the
grandmother. Transitions between states represent
recombination events. The Markov model is of the con-
tinuous-time variety, where time in this case corre-
sponds to the mapping distance. Emission symbols
correspond to the marker data. This constitutes the hid-
den quality of the model, as grandparental marker data
might not map uniquely to the state.

Application of HMMs for haplotyping

The genotype probability model in the intercross gains
its speed from the fact that only a single “focus” indivi-
dual, its parents and grandparents need to be analyzed
at the same time. In the model, what is essentially
tracked is the gametes generated by meiosis in the par-
ents, expressed as grandparental origin in each locus. As
two meioses are tracked, there are 2 * 2 = 4 states.

The same general approach, where analysis takes place
over a pedigree including a focus individual and the
immediate ancestors to that focus individual, can be
extended to include further generations of ancestors.
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Adding one more generation would imply 64 states
(tracking 6 independent meioses), as even the phase in
alleles that were not transmitted need to be calculated
to accurately track possible state transitions. Adding
another generation increases the number of states to 16,
384, which in practice is not tractable. As noted above,
the genotyping model tracking phase in the parent, but
that information is never recorded explicitly. In order to
make the implicit tracking of phase in individual ana-
lyses explicit, we introduce a parameter, called skewness,
per marker per individual. This parameter indicates the
probability of the “true” ordering of the unordered mar-
ker value pair {A, B} to be AB or BA, respectively.
Rather than simply using binary emission probabilities
for supported or unsupported marker values, the emis-
sion probability will be dependent on the state realisa-
tion considered. A skewness parameter value of 0.5 is
neutral to ordering, while a value of 0.0 exlusively per-
mits AB, and a value of 1.0 will exclusively permit BA.
A dataset is phased if the skewness parameters for all
heterozygous marker value pairs take such extreme
values.

For the haplotyping application, we are using the 64-
state model with the addition of skewness parameters.
The approach of centering each analysis on a focus indi-
vidual is kept from the genotyping model. A full haplo-
typing iteration is thus only a matter of computing the
model for each marker in each focus individual.
Although no ancestral genotype information is used for
the grandparents, the present of linkage will favour
skewness assignments mapping linked alleles to the
same strand. With a proper setup, the skewness para-
meters for all marker-individual pairs can be trained in
an iterative manner based on analyses in the pedigrees
where the individuals appear.

Training methodology
We use a modified Baum-Welch approach [10] for
training the skewness parameters. This approach is
based on expectation-maximisation of the model prob-
ability for observed data under optimisation of some or
all model parameters. The actual value distribution of a
parameter under optimisation in one iterated realisation
of the model is used as the prior distribution in the next
one, until convergence is reached. The skewness para-
meter for the first heterozygote on each chromosome in
each individual is fixed to 0.0, to avoid unnecessary
symmetries. The transition parameters related to recom-
bination can be kept fixed, based on a pre-determined
marker map with (Haldane) mapping distances, or be
subject to optimisation in tandem with the skewness
parameter set.

The strand numbering is not directly connected to
parental origin. Rather, the model is computed multiple
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times, allowing for the (grand)parental origin of each
strand to be either the sire or dam for the respective
parent. When the model has converged, most such
alternatives can be truncated early due to extremely low
likelihood, as a form of optimisation similar to a beam
search. The total number of such shift combinations is
8 in the 64-state model, as shifts are only needed for the
focus individual and its parents. The same skewness
parameter is appearing in multiple separate analyses, as
one individual can appear in multiple focus analyses: A
parent will appear in the analysis pedigree of every off-
spring. An individual acting as the focus individual in
one pedigree can also be a parent or a grandparent in
another, in a multi-generational setting. Furthermore,
some pedigrees can be completely uninformative for a
specific parameter. The “optimal” skewness assignment
based on such a pedigree will always be the a priori
value of the parameter from the previous iteration, and
it could be called skewness-agnostic. For these two rea-
sons, a voting scheme is implemented. The skewness
contribution from each analysis pedigree corresponds to
the deviation from the a priori value used. Thus, unin-
formative locations are not hampering convergence if
information is found in other pedigrees. Furthermore,
the voting is scaled for contributions to ancestors more
than one generation away from the focus individual.
This is due to the fact that there is a single meiosis
event truly tracked, the one resulting in a gamete form-
ing the parent individual (F;). The offspring to that indi-
vidual are only giving different aspects of information on
the same event, and should be weighted accordingly. If
this was not done, the haplotype estimates in an Fy indi-
vidual would be biased towards the allele combination
found in F; individuals with a high number of F,
offspring.

The voting approach where lack of information is
ignored was chosen to accelerate convergence. However,
in early iterations information is lacking in many loci
and those few fragments of information that are present
can turn out to be incorrect. For this reason, the new
value p' for the a skewness parameter with an a priori
value of p is limited by clamping to satisfy the condition
lp - p'| < p(1 - p) min(1/(0.5 + (1 — p)), 1/(0.5 + p)).
This clamping puts a limit to the relative change in pre-
ference of one phase assignment over the other, as
expressed by the ratio p/(1 — p), to a factor of 3. For
example, a skewness parameter value starting out at 0.5
will always be found in the range [0.25, 0.75] after one
iteration. If the value is updated to 0.25, it will be found
in the range [0.1, 0.5] in the following iteration. By lim-
iting the rate of change for the probability ratio between
these two complementary states, unstable behaviour is
avoided.
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In the Fj generation, the only definition of the alleles
arises from the initialisation of the skewness value in
one marker. In other words, the two strands can only be
defined and separated relative to that anchor marker.
Phasing a full chromosome, especially a long one, is
problematic as the linkage between a distant marker and
this anchor will be very weak or non-existent. The hap-
lotyping problem based on meioses is inherently local,
along the chromosome, and between closely related
individuals. Skewness values might converge in different
directions in different regions of the chromosome,
assuming an extraneous recombination event. The tradi-
tional Baum-Welch approach, even with the modified
voting scheme, would only resolve such a situation at a
very slow pace, if at all. Therefore, an inversion step is
added to the algorithm, where inverting all the skewness
values downstream of the current marker is tested in
each iteration.

If the total probability of the observed sequences, over
all pedigrees, increases with such a change, it is
accepted. Due to the model structure, such an inversion
can be performed using the normal data structures of
hidden Markov model algorithms, by essentially only
modifying the state vector when combining forward and
backward probabilities. In practice, care needs to be
taken to avoid oscillatory behaviour, especially with
respect to inversion events.

Summarised algorithm

The following algorithm summarises the haplotyping
approach described above for a single chromosome. As
different chromosomes are completely unrelated from a
linkage and phasing perspective, the whole approach
can simply be repeated per chromosome. Isolating the
phasing operation per chromosome can also simplify
parallelisation of the computations and reduce the
amount of memory needed for each step.

1. Initialise skewness values to 0.5 everywhere, except
at one heterozygous marker in every individual

2. Loop until convergence (e.g. a minimum sum of
skewness changes, or a fixed number of iterations based
on chromosome length)

(a) Loop over all focus individuals

i. Loop over all markers

A. Compute the marginalised probability for strand
realisations corresponding to observed marker values,
taking all 8 parental shifts (defined above) into account,
using suitable hidden Markov model algorithms.

B. Contribute the deviation between the current skew-
ness value, and the resulting ratio, for each individual in
the analysis pedigree, as a vote. Divide the votes to
grandparents by the total number of (half-)siblings shar-
ing that parent.
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C. Compute and contribute probability changes arising
from possible skewness inversions in each individual in
the dataset in a similar manner.

(b) Loop over all individuals

i. Loop over all markers

A. Update skewness values according to recorded
votes. Cap the maximum possible change in the ratio
p/(1 — p) between iterations, in order to retain stability.

B. If the recorded votes for a favorable inversion at
this position exceeds some threshold, perform an inver-
sion of all downstream skewness values.

Materials

The common dataset prepared for the 14th QTL-MAS
workshop was used. This dataset contains 3,226 indivi-
duals, spread over 5 generations, with 20 founders. 10,
031 SNP markers were defined over 5 chromosomes all
about 100 million base pairs in length. A uniform
recombination rate of 1 ¢cM/Mbp was applied for both
sexes. Haplotypes for the founders were sampled from a
simulated population of 5, 000, using the methods
described in [11].

Results

64 cores on Intel Core 2 Quad 2.66 GHz CPUs distribu-
ted over 8 nodes in a cluster were used for computa-
tions. The code is written in C++, parallelised using
OpenMP and the MPI support in the Boost library [12].
Version 11.1 of the Intel C++ compiler was used with
aggressive optimisation settings. One especially impor-
tant consideration in this context is how the software
and hardware stack as a whole handle so-called denor-
malised numbers, where we use truncation to zero to
get adequate performance. Pseudo-asymptotic conver-
gence was studied by completing 25 iterations in 3,116
minutes, whereas 10 iterations would suffice for almost
identical results. The set of focus individuals were cho-
sen to be the set of all non-founder individuals, thus
including all genotype and ancestor information possi-
ble. The method was specified with 3 generations (64
states), so the individuals included in each local analysis
pedigree included the focus individual, its parents and
grandparents (if available).

In an alternate test run with inversion turned off, con-
vergence was not achieved within 25 iterations. Details
on the rate of convergence, as well as the number of
skewness inversion events per iteration, are illustrated in
Figure 1. Inversions are in practice only needed during
the very first few iterations, after which remaining
uncertain skewness assignments slowly converge. The
drastic improvement due to inversion is shown in Figure
2, where for the simplicity of presentation the true
skewness value is illustrated as 0 over the full chromo-
some. The inversion scan locates subregions of the
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chromosome tending towards incompatible local optima
and unifies them.

Results were compared for each generation separately.
Generations were defined as contiguous blocks of num-
bered individuals in the dataset. In a few matings, a
founder individual was mated to a generation 2 indivi-
dual, but for our purposes (only relevant in the result
presentation), the generation number of the resulting
offspring is 3.

True haplotype information was provided by the orga-
nisers after the workshop. Comparisons demonstrate
that correct phasing was achieved in 100% of heterozy-
gous loci in the founder generation, where linkage in
offspring was the only source of haplotype data. Total
per-marker accuracy was over 99.9%, and over 99.5% in
all generations. Other results are summarised per gen-
eration in Table 1.

The distribution of phasing errors along chromosomes
and between individuals is also relevant. Even in the
most problematic generation, generation 2, over 93% of
all individuals were phased correctly over all 10, 031
markers across 5 chromosomes, making the errors loca-
lised to a limited subset of the population.

Discussion
In general, individuals with a rich pedigree have a higher
probability of being phased correctly. This means that
such individuals should preferably have parents and
grandparents that themselves are correctly phased. In
addition, a high number of F; and F, offspring are also
of value. Each such individual represents a unique meio-
sis event. The linkage information available from multi-
ple direct offspring, including further refinement
through descendants in successive generations, gives
much stronger information than relying on ancestry
alone. Based on both of these conditions, generation 2 is
at an disadvantage. Many individuals lack children alto-
gether, and those that did procreate still have a limited
number of grandchildren. They also have only parental
genotype data, with no grandparental information.
When long homozygous regions appear, there is no
external reference (like linkage information from grand-
parents or grandchildren) to assist the phasing process.
The founder generation completely lacks ancestral
genotype information, but this is compensated by the
fact that every individual in the dataset is a descendant
to the founders, and that founder reproductive success
was reasonably evenly distributed. Therefore, every
founder individual appeared in a high number of analy-
sis pedigrees, giving the 100% correct result. The fact
that each founder sire was mated to multiple dames also
helped resolve possible ambiguities in both sexes, while
in generation 2, most individuals with offspring only
produced a single brood.
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Figure 1 Convergence. Left axis (solid line) illustrating scaled sum of total logarithm probabilities over all analysis, up to iteration 25. In
addition, block symbols (right vertical axis) show the number of downstream inversion events, most of which were occurring in the founder
generation. After iteration 8, only minor adjustments were determined by the algorithm.
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Efficient phasing of genotype data is a complex pro-
blem. Our presented approach provides excellent perfor-
mance in a dataset that is representative of what can be
encountered from high-quality genotyping in multi-gen-
erational crosses of heterogeneous stock. It should be
noted that other methods achieving > 99% accuracy fre-
quently do so by leaving some loci unphased. Our
method will, on the other hand, converge in all posi-
tions, given proper initialisation. The most critical
aspect is to choose a suitable locus for zero initialisation
of skewness. If that locus can not be used to differenti-
ate allele origin, the symmetry caused will result in the
skewness values for all loci in that individual to remain
unchanged. This situation typically arises if parents as
well as grandparents are also heterozygous with the
same alleles in the locus, with no known linkage, or if
data is completely missing. In most cases, a sibling or
cousin of the “unphasable” individual will contribute
some information to the skewness values of parents and

grandparents, eventually alleviating the symmetry, yield-
ing convergence in all individuals. This was not a pro-
blem for the current dataset, but it has on occasion left
individuals unphased in other datasets. Switching initali-
sation loci will generally remedy such cases.

The specific optimisation approach used is critical to
attain the two conflicting goals of convergence within
a reasonable number of iterations, as well as ensuring
that the converged result is actually correct. The use
of e.g. Viterbi training [13] would possibly accelerate
the runtime, but the converged results would be highly
inferior. In fact, such an approach would be more
similar to existing heuristics-based solutions, as Viterbi
training relies on the assumption that a single most
likely realisation will dominate the results. In the early
iterations, the exact opposite is true for the haplotyp-
ing problem, where a high number of different realisa-
tions of phasing are attributed very similar likelihood
in the model.
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Figure 2 Use of inversion. During optimisation, a scan is performed in each analysis for inverting the skewness values determining phase
downstream of each marker. Based on this scan, knots or bubbles of incorrect phase can be identified and resolved. The two lines are
illustrating iteration 2 and 3, respectively, for chromosome 1 in the founder individual with ID 3. In iteration 2, a large range of markers has
converged towards an inverted phase versus the correct one. This region is identified and inverted for iteration 3.

Conclusion

We have presented an efficient approach for determin-
ing phase from unphased marker data in a dense marker
map, combined with pedigree data. In contrast to other
approaches, we are able to take the full genotype infor-
mation of the whole chromosome into account when
determining optimal haplotypes. Thanks to the use of
an efficient local Markov model, considering the direct
ancestors to each individual, we are able to do this with
high performance.

Table 1 Accuracy per generation on the level of markers
and individuals

Generation  Perfectly phased individuals ~ Correctly phased markers
1 100.0% 100.0%
2 93.78% 99.60%
3 97.69% 99.98%
4 98.67% 99.99%
5 98.33% 99.97%
All 97.68% 99.93%

Accuracy in produced phasing per generation. A perfectly phased individual
has no heterozygotic marker with incorrect phase over the 5 chromosomes.
Only a very limited amount of markers were incorrectly phased. The total
proportion of individuals affected by errors was below 10% in all generations.

The quality and practical feasibility of our method for
haplotype inference allow producing completely phased
genomes in dense pedigrees, reducing the need for
molecular methods for determining explicit haplotype
data. The presence of phased data can be used to iden-
tify the origin of otherwise similar marker sequences,
something that is needed to explore genetic architec-
tures only indirectly connected to the marker map used
(e.g. recent mutations in an SNP map general to the
species studied).

In a simple dataset where genotyping errors are absent
and no information is missing, the algorithm used could
be greatly optimised by pruning the search tree, assign-
ing probabilities of 0 rather than a small ¢ for improb-
able cases and assuming genotype data to be available
for all positions. However, our main line for current
work is rather to improve handling of missing and
incorrect genotype data. For example, it is not uncom-
mon that pedigree data is available even for individuals
where genotyping failed or was never performed. Two
specific cases under consideration are advanced line
intercrosses and the analysis of heterogeneous stock.

The codebase did not undergo any specific changes to
accommodate the workshop dataset, with the exception
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of modified routines for input and output in order to
match relevant file formats. Code is available under a
BSD-style license from our website, http://www.it.uu.se/
research/project/ctrait. In parallel with further methods
development, the introduction of a standardised R inter-
face to the code is also underway.
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