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Abstract

fast.

Background: Genome-wide dense markers have been used to detect genes and estimate relative genetic values.
Among many methods, Bayesian techniques have been widely used and shown to be powerful in genome-wide
breeding value estimation and association studies. However, computation is known to be intensive under the
Bayesian framework, and specifying a prior distribution for each parameter is always required for Bayesian
computation. We propose the use of hierarchical likelihood to solve such problems.

Results: Using double hierarchical generalized linear models, we analyzed the simulated dataset provided by the
QTLMAS 2010 workshop. Marker-specific variances estimated by double hierarchical generalized linear models
identified the QTL with large effects for both the quantitative and binary traits. The QTL positions were detected
with very high accuracy. For young individuals without phenotypic records, the true and estimated breeding values
had Pearson correlation of 0.60 for the quantitative trait and 0.72 for the binary trait, where the quantitative trait
had a more complicated genetic architecture involving imprinting and epistatic QTL.

Conclusions: Hierarchical likelihood enables estimation of marker-specific variances under the likelihoodist
framework. Double hierarchical generalized linear models are powerful in localizing major QTL and computationally

Background
Genetic analyses in livestock studies are generally based
on information from pedigrees and molecular markers.
Traditionally, a kinship matrix can be calculated using
the pedigree data, which can be used in a generalized
linear mixed model (GLMM) to estimate breeding
values. By including genetic marker information, geno-
mic estimated breeding values (GEBV) can be obtained
taking into account the information from these markers,
and also quantitative trait loci (QTL) can be mapped by
associating genotypes at a certain locus to the pheno-
type observations.

Dense marker genotypes along genome can now be
affordably obtained due to new and efficient methods
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for typing single nucleotide polymorphism (SNP) mar-
kers. The dense SNP maps have made genome-wide
association (GWA) studies popular for gene detection.
Classic GWA methods [1], commonly applied to study
genetic diseases in humans, are based on simple
repeated single marker tests across the genome. To
achieve more powerful mapping and better prediction, a
unified model including all the SNPs in the genome is
preferred. Such models have been estimated using Baye-
sian methods, implemented by Markov chain Monte
Carlo (MCMC) techniques that are computationally
demanding [2-5]. Lee and Nelder developed the double
hierarchical generalized linear model (DHGLM) in the
likelihoodist framework [6]. DHGLM enables estimation
of marker-specific variances using a fast iterative algo-
rithm without specifying any prior distributions [7]. The
likelihoodist way of estimation is conducted through a
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likelihood function named hierarchical likelihood (h-
likelihood) [8].

The aim of this paper is to map QTL and report
GEBV for the simulated dataset provided by QTLMAS
2010 workshop. We employ a unified analysis via the /-
likelihood and model the data using DHGLM. GEBV
are calculated from the estimated marker effects, and
QTL are mapped by the estimated marker-specific
variances.

Methods

Data

The dataset used in this paper was simulated for the
QTLMAS 2010 workshop (Poznan, Poland). A pedigree
consisting of 3226 individuals in 5 generations (Fy - F,)
was simulated, where F, contains 5 males and 15
females. Each female was mated once and gave birth to
about 30 progeny. Two traits were simulated, where one
is quantitative (QT), and the other is binary (BT).
Young individuals in F, (individuals 2327 to 3226) had
no phenotypic records. The genome was assumed to be
about 5 x 10® bp long, consisting of 5 chromosomes,
each of which contained about 1 x 10® bp. Each indivi-
dual was genotyped for 10031 biallelic SNPs in the
genome.

Models

DHGLM provides a unified analysis for both QTL map-
ping and genomic breeding value estimation. Similar to
BayesA, the data are modeled on two levels, i.e. both the
phenotypic mean and the variance are modeled with
random effects. For a quantitative trait, the phenotype y
(n x 1 vector) is postulated as a random effect model

y=XB+Zg+e (1)

where g ~ N(0, diag(\)) are the SNP effects, A = (A,
Aayes M)’ are the variances of the SNP effects, and the
residuals e ~ N(0, 6°I). The fixed effects B included an
intercept and the sex effect in our application to reduce
the residual errors. The SNP variances A are modeled as

logh=1a+b 2)

with an intercept 4 and normally distributed random
effects b. The genomic estimated breeding value (GEBV)

for individual i is computed as Z;":l z;8; - QTL can be

scanned using the marker-specific variances A. For a
binary trait, the mean of y, is modeled by the same lin-
ear predictor Xf + Zg through a logit link function.

For the marker-specific variances, the correlated ran-
dom effects, b, follow a multivariate normal distribution
with a mean of zero and a variance-covariance matrix
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Azabz{p‘kfl‘}l <k, 1<m, where m is the number of

SNPs and k, [ are the SNP indices. When p = 1, all the
SNPs have a constant variance (GLMM); when p = 0,
the SNPs are assumed to be independent (DHGLM);
and for 0 <p < 1, the correlation between two SNPs is a
monomial function of p, which is referred to as the
smoothed DHGLM [10]. We propose the use of
smoothed DHGLMs since it reduces the noise in mar-
ker-specific variance estimates and highlights the signals
of QTL. p, regarded as a spatial correlation parameter,
was chosen to be 0.9 in this paper, which nicely shrank
the SNPs with zero effect.
The overall phenotypic variance can be expressed as

2_ 2 2 2
oy =0’ + D 8oL, 3
j

where CTZZ.] is the variance of z; (the j-th column of
Z) across individuals. These variance values can be
directly calculated from the data. The contribution (her-
itability) of a particular SNP is expressed by

hi =o; g /oy [4l.

Fitting algorithm

According to the extended likelihood principle, infer-
ence of the random SNP effects g should be drawn
through the /-likelihood, fixed effects B through the
marginal likelihood, and variance components A, 6> and
o through the adjusted profile likelihood [11]. How-
ever, for efficient estimation, we propose to initialize
variance components and iterate the following steps
until convergence [7],

+ Solve the following WLS problem for [A} and g,

T@zuTM[’?]ﬂ'sz}(y] @
g 0

X z ol 0
Where T, —(0 I and X, —( 0 diagd) ]

The subscript M stands for ‘mean’.
« Update o® by fitting the deviance residuals

d,, = 2%,“ / ( 1-qun ) using an intercept-only gamma

GLM and prior weight wy; = (1 — qu)/2, where

4

éMz(é,eré/sz are the residuals of (4), and

qy = ( Qo D )' are the diagonal elements of

_1 .
TM(T;\/JZKAITM) T, > The subscript 1 and 2
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stand for individuals (1 to #n) and SNPs (z + 1 to n +
m), respectively.
« Solve the following WLS problem for 4 and },

~

, - a ’ - z
Ty ZD1 Tp| ~ [=Tp z:1)1 ( J (5)
b 0
1 L diag(w 0
where Tj, = , 2p = 8(Wa2) o z=

log A + (dpro — A)/A is linearized A in a gamma GLM
with a log link, and L satisfies LL' = A. The subscript D
stands for ‘dispersion’.

+ Update g7 by fitting the deviance residuals

d, :ézD /(1-qp) using an intercept-only gamma

GLM and prior weight wp = (1 — qp)/2, where é, are
the last m residuals of (5), and qp are the last m diago-

-1
nal elements of T, ( T} ZBI Tp ) T, 251 .
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Results and Discussion

Estimation of SNP effects

The effect of each SNP was estimated by a smoothed
DHGLM with spatial correlation parameter p = 0.9 for
both traits (Figure 1). For both traits, DHGLM shrank
the estimated SNP effects for the loci not linked to
main QTL towards zero; meanwhile, the SNPs linked to
QTL were highlighted. Note that the extent of shrinkage
depends on the spatial correlation parameter p. p = 0.9
was specified in our analyses since it produced better
shrinkage and smoothing results for this particular
dataset.

QTL mapping

Moving from the mean part to the variance (dispersion)
part of the models, marker-specific variances were esti-
mated and used to detect QTL (Figure 2). The overall
variance component estimate from GLMM can be
regarded as a reference value (smoothed DHGLM with p
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Figure 1 Estimated SNP effects The SNP effects were estimated using the smoothed DHGLM with spatial correlation parameter p = 0.9. The
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Figure 2 QTL detection using estimated marker-specific variances The marker-specific variances were estimated using the smoothed
DHGLM with spatial correlation parameter p = 0.9. The dashed horizontal line is the overall variance of SNP effects estimated by GLMM. The
peaks higher than this line were detected as QTL, and other small peaks below were suggestive QTL. Simulated QTL are also shown as vertical
bars with their heights proportional to the variances they explained. For nice visualization, simulated variances are 1/50 magnified for QT and 1/
1500 magnified for BT.

= 1), which was estimated using the hglm package [12] in

Table 1 Estimated heritability of the detected QTL and
suggestive QTL for QT and BT

R [13]. The 6 peaks for QT, corresponding to SNP num-
ber 163, 952, 2719, 3957, 4493 and 5492, were QTL

which had values greater than the overall variance com-
ponent estimate. The two strong QTL for BT had similar
positions as two for QT. Other small peaks lower than
the reference line were suggestive QTL. Simulated main
QTL were precisely mapped. The two main epistatic
QTL pairs for QT were detected as two single QTL due
to the very short distance between interacting SNPs. Her-
itability for QT and BT was calculated for detected QTL
and suggestive QTL (Table 1). 30.35% and 33.42% of the
phenotypic variance were explained for QT and BT,
respectively. Phenotypes of QT and BT are significantly
correlated with a Spearman’s rank correlation coefficient

of 0.2431. However, joint-modeling both traits were not
considered in this paper.

Chromosome Position (bp) h? of QT h? of BT

QTL 1 8396357 0.0106 0.0957
1 49965266 0.1096 -

2 32741451 0.0167 -

2 95418368 00177 -

3 22590128 0.0606 0.1101

3 71794627 0.0589 -

Suggestive QTL 1 49965266 - 0.0859
2 79212967 0.0093 -

2 95418368 - 0.0096

3 4590043 0.0109 -

3 39652617 0.0092 -

3 84974466 - 0.0066

4 1456752 - 0.0265

Sum 03035 03342
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Figure 3 Scatterplots of GEBV against TBV for the young individuals without phenotypic records The GEBV were estimated using the
smoothed DHGLM with spatial correlation parameter p = 0.9. The values are not scaled on the same mean.
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GEBV were estimated for all the 3226 individuals in the
pedigree. Examining out-sample prediction, we compare
the GEBV with the true breeding values (TBV) for the
young individuals (2327-3226) without phenotypic
records (Figure 3). The correlation coefficients between
GEBV and TBV were 0.60 for QT and 0.72 for BT. The
linear regression slopes were 0.41 for QT and 0.62 for
BT. Accuracy of GEBV was worse for QT than for BT
mainly because three imprinted QTL were simulated
only for QT, and QT had a more complicated genetic
architecture.

Conclusions

DHGLM were shown to be an efficient and reliable
approach for both QTL mapping and genomic selec-
tion. Since DHGLM can be estimated by iterating
interlinked GLMs, the execution time is greatly shor-
tened comparing to the Bayesian computation. On a
Macintosh laptop with a 2 GHz processor and 4 GB
memory (1067 MHz), it took about 10-20 minutes,
depending on starting values, to obtain our results
using our implementation in R. No priors are required
for parameters in DHGLM. Main QTL mapped via
DHGLM showed very good accuracy though some
QTL with small effects were shrunk or smoothed
down. An R package iQTL has been implemented and
is available on R-Forge: https://r-forge.r-project.org/R/?
group id=845.
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