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Abstract

Background: Partial least square regression (PLSR) was used to analyze the data of the QTLMAS 2010 workshop to
identify genomic regions affecting either one of the two traits and to estimate breeding values. PLSR was
appropriate for these data because it enabled to simultaneously fit several traits to the markers.

Results: A preliminary analysis showed phenotypic and genetic correlations between the two traits. Consequently,
the data were analyzed jointly in a PLSR model for each chromosome independently. Regression coefficients for
the markers were used to calculate the variance of each marker and inference of quantitative trait loci (QTL) was
based on local maxima of a smoothed line traced through these variances. In this way, 25 QTL for the continuous
trait and 22 for the discrete trait were found. There was evidence for pleiotropic QTL on chromosome 1. The 2000
most important markers were fitted in a second PLSR model to calculate breeding values of the individuals. The
accuracies of these estimated breeding values ranged between 0.56 and 0.92.

Conclusions: Results showed the viability of PLSR for QTL analysis and estimating breeding values using markers.

Background
Detection of genomic regions affecting traits is a goal in
many genetic studies. Studies applying distinct methods
for detection of these regions, called quantitative trait
loci (QTL), have been described, ranging from single
marker regression [1] to methods that enable to fit sev-
eral markers simultaneously [2,3]. Simultaneously fitting
all markers leads to more accurate detection of QTL
compared to independent fitting of single markers in a
regression model when there is linkage disequilibrium
(LD) between the genomic regions that affect the trait
but comes at the cost of increased computational
requirements [2].
Partial least square regression (PLSR) is one method

for simultaneously fitting multiple markers and was
applied by Bjornstad et al. for detection of QTL [3]. An
interesting characteristic of PLSR its straightforward

application of to simultaneous analysis of data of multi-
ple traits [3].
The objectives of this study were to use PLSR to

search for QTL and to estimate breeding values in the
dataset of the QTLMAS 2010 workshop.

Material and methods
Initial analyses
The data were analyzed to identify generation and gen-
der effects. Furthermore, a bivariate animal model was
fitted in ASREML [4] using the matrix of additive
genetic relations as relative covariance matrix to esti-
mate variance components.

Marker based analyses
Let X be the genotype matrix; the number of rows is the
number of individuals and the number of columns is the
number of markers. Elements of X are 0, 1, or 2,
according to the number of one of the two alleles for
that marker in that individual. Let Y be the matrix of
phenotypes; the number of rows is the number of
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individuals and the number of columns is the number of
traits in the data (two in these data).
We describe our regression methods in the following

sections, beginning with an analysis where each trait
was regressed on each marker independently and conti-
nuing with PLSR.
Single marker regression
We used function lm of R [5] to regress each trait on
each marker. In this analysis, we used the same model
for both traits and ignored the non-normal distribution
of the discrete trait. We fitted the following model to
the data:

yt= µ + xmb + e; (1)

e ~ N(0,Is2 );

where yt is the vector of phenotypes for trait t, µ is a
mean, xm is the vector of genotypes corresponding to
marker m, b is the unknown regression coefficient of yt
on xm and e is the vector of residuals. Inference was
based on ANOVA applied to the fitted models.
Partial least square regression
In PLSR, matrices X and Y are decomposed into princi-
pal components and loadings:

X = TW′

Y = UQ′ (2)

where T and U are the matrices of scores and W and
Q are the matrices of loadings [6]. PLSR places two con-
ditions in the decomposition of X and Y. The first
requires orthogonality of W and Q and the second
requires maximal correlation between the columns of T
and U[6]. After decomposition, U is regressed on T :
U = TB + E, (3)
where B is an unknown matrix of regression coeffi-

cients and E is a matrix of residuals. We used matrix B
to calculate the matrix of regression coefficients of the
individual markers, Bm :

B TBQm = ′. (4)

Fitting We treated the data of both traits equally, with-
out accounting for the non-normal nature of the dis-
crete trait. Since PLSR using all marker loci (~ 10000)
was impossible, we calculated the regression coefficients
in two steps. First, we regressed the phenotype data on
the markers in each chromosome using PLSR and
obtained the empirical distributions of these regression
coefficients by bootstrapping. Second, we selected the
1000 most significant markers for each trait, defining
significance of a marker as the absolute value of its
regression coefficient divided by its empirical standard

error. Subsequently, we regressed the phenotype data on
the selected markers using PLSR and recalculated their
standard errors using bootstrapping.
We used the R-package pls [7] to fit, cross validate,

and use the PLSR models.
Detecting QTL Our method assumed that the variance
explained by markers reaches a maximum in the neigh-
borhood of a QTL. We used locally weighted regression
[8] to estimate a smoothed curve through the standar-
dized regression coefficients of the markers, calculated

as b
se

( b is the estimated regression coefficient for that

marker and se is its empirical standard error, obtained

from bootstrapping). We calculated the first and second
derivative of this smoothed curve to find local maxima
of the curve and we considered these local maxima as
QTL. We calculated the variance explained by each

QTL as s bm p p2 2
2 1= −( ) , where p is its MAF and b

is its regression coefficient from in the single marker
regression analyses.
Calculating EBV We estimated breeding values for all
individuals in the data using the regression coefficients
for the markers in the second PLSR model. Estimated
breeding values (EBV) were calculated as EBV XB= m .

Results
Initial analyses
The initial analysis revealed a positive correlation
between the traits. No signals of selection nor sex effects
were detected in the data.
The results showed that both traits were heritable and

genetically correlated. Heritability of the first trait was
0.53 (s.e. 0.06) and heritability of the second trait was
0.22 (s.e. 0.04). The phenotypic correlation was 0.25 (s.e.
0.03) and the genetic correlation was 0.66 (s.e. 0.09).

Single marker regression
Figure 1 shows the smoothed curve of the negative loga-
rithm of the significances in the single marker analyses.
QTL for the continuous trait were located on chromo-
somes 1 and 3 with smaller QTL on all chromosomes.
The effects of QTL for the discrete trait were smaller
compared to the the continuous trait with QTL on
chromosomes 1, 2 and 3. Figure 1 suggests at least three
pleiotropic QTL; one at approximately half the length of
chromosome 1, one at the beginning of chromosome 3
and another at approximately 0.25 the length of chro-
mosome 4.

Partial least square regression with bootstrapping
Figure 2 shows the smoothed curves through standar-
dized regression coefficients of the PLSR models.
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Important QTL for the continuous trait were located on
chromosomes 1, 3 and 4. The curves of chromosome 2
were remarkably flat compared to the results in Figure
1. QTL with an important effect on both traits were
located on chromosomes 1, 3 and 4.
Local maxima identified in Figure 2 identified QTL,

which are reported in Table 1 with regression coeffi-
cients and variance. The variance of QTL, expressed as
a proportion of the total genetic variance, was small for
both traits. The largest QTL for the continuous trait
was located at position 1058 of chromosome 1 and

explained 6.8% of the genetic variance, the largest QTL
for the discrete trait was located at position 1977 of
chromosome 2 and explained 4.3% of the genetic var-
iance (Table 1). Based on this table, pleiotropic QTL
were located between positions 156 and 159 and posi-
tions 494 and 495 on chromosome 1, between position
3242 and 3274 on chromosome 2, and between position
8890 and 8920 on chromosome 5 because these inter-
vals harbored QTL affecting both traits (Table 1).
The correlations between the EBV and the phenotypes

and between the EBV and the true breeding values
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Figure 1 Smoothed curve of the -log(P) of the marker effects for the two traits, estimated using locally weighted regression.
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Figure 2 Smoothed curve of standardized regression coefficients of individual markers estimated with PLSR, estimated using locally weighted
regression.
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Table 1 Estimated regression coefficients and approximate standard error for the most significant markers in of the
second PLSR model. The highlighted cell contain a regression coefficient which was considered most significant, the
other cells contain the less significant regression coefficients.

marker Cont. trait Discr. trait

MAF b s

s



m

g

2

2

b s

s



m

g

2

2

Chrom. 1

156 0.46 2.9920 0.0817 0.0612 0.0405

159 0.39 -2.3459 0.0479 -0.0654 0.0442

494 0.48 0.3242 0.0010 -0.0369 0.0148

495 0.06 -1.4611 0.0046 0.0672 0.0116

1058 0.31 4.1433 0.1355 0.0426 0.0170

1087 0.45 -0.4640 0.0020 -0.0397 0.0170

1621 0.41 0.2338 0.0005 0.0108 0.0012

1976 0.29 -0.0818 0.0001 0.0336 0.0102

Chrom. 2

1977 0.37 -0.3898 0.0013 -0.0924 0.0866

2340 0.42 2.8491 0.0724 0.0598 0.0378

2481 0.31 1.0574 0.0088 0.0434 0.0175

2864 0.27 1.2254 0.0107 0.0320 0.0087

3242 0.09 0.3485 0.0004 -0.0043 0.0001

3274 0.31 1.3028 0.0134 0.0867 0.0703

4034 0.17 1.5167 0.0119 0.0572 0.0200

Chrom. 3

4035 0.31 -1.6002 0.0200 -0.0150 0.0021

4384 0.37 -1.3395 0.0153 -0.0650 0.0427

4519 0.40 -0.1875 0.0003 -0.0489 0.0249

4832 0.47 -1.7533 0.0281 -0.0576 0.0360

5447 0.45 1.9137 0.0333 0.0062 0.0004

5695 0.46 -1.2392 0.0140 0.0278 0.0084

5811 0.38 -2.1743 0.0407 -0.0930 0.0883

6082 0.28 0.6369 0.0030 0.0123 0.0013

Chrom. 4

6083 0.02 3.1419 0.0078 0.0192 0.0003

6671 0.46 -1.4765 0.0199 0.0126 0.0017

6995 0.06 5.3177 0.0585 0.1009 0.0250

7099 0.41 -0.9055 0.0073 -0.0352 0.0131

7209 0.46 -0.3541 0.0011 0.0010 0.0000

7386 0.39 -0.4365 0.0017 0.0109 0.0012

7433 0.46 0.4793 0.0021 0.0590 0.0377

7697 0.37 -0.1112 0.0001 0.0500 0.0252

8073 0.22 2.1894 0.0300 0.0117 0.0010

Chrom. 5

8324 0.44 1.5840 0.0226 -0.0076 0.0006

8528 0.39 1.1567 0.0117 -0.0035 0.0001

8538 0.42 1.0233 0.0093 0.0027 0.0001

8890 0.35 0.4145 0.0014 0.0404 0.0162

8920 0.21 -0.1872 0.0002 0.0565 0.0233

9514 0.13 -2.6520 0.0283 0.0186 0.0017

9523 0.44 1.2587 0.0143 0.0274 0.0080

9744 0.21 -1.1246 0.0078 0.0487 0.0173

9754 0.16 -0.805510 0.0032 -0.0094 0.0005
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(accuracies of EBV) are displayed in Table 2. All correla-
tions decreased from generation 0 to generation 3 for
unknown reasons. The correlations in generation 4
where lower than in the previous generations because
these individuals were not used to fit the model. The
correlations between the phenotypes and the EBV where
highest in the continuous trait but the correlations
between the true breeding values and the EBV were
highest in the discrete trait (Table 2).

Discussion and conclusions
We used a non conventional method to infer QTL,
based on finding local maxima of a smoothed curves
traced through the QTL probabilities (in the single mar-
ker regression) and through the standardized regression
coefficients (in PLSR). This method assumed that a
QTL will appear as a local maximum in the smoothed
curves. An advantage of this method over methods that
concentrate on profiles of single markers is that it com-
bines evidence provided by a series of markers in the
proximity of QTL. A disadvantage is that it does not
provide a quantitative test statistic to statistically test for
the presence of QTL.
Comparing the QTL detected with our method to true

QTL locations revealed differences and similarities. We
detected QTL on chromosome 5 while no QTL were
simulated on this chromosome. This false detection is
inherent to our method since detection was only based
on local maxima in the curves. The method suggested
many pleiotropic QTL and agreed with the truth,
because the majority of the QTL were pleotropic.
We used single marker regression to estimate the var-

iance of individual QTL because we expected that PLSR
would underestimate the regression coefficients of QTL
in LD with many markers. A disadvantage of this could
be biased regression coefficients of QTL in LD with
other QTL [2].

The correlations between EBV and true breeding
values of individuals in generations 0 to 3 agreed with
the correlations of EBV calculated in the studies of
Meuwissen et al. [2]. Avoiding the need to preselect
markers might lead to higher correlations for the nonge-
notyped individuals and the method Chun and Keles [9]
might be an interesting alternative.
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Table 2 Correlations between estimated breeding values
(EBV) and phenotypes (P) or true breeding values (TBV)
of the continuous and discrete trait of individuals in
simulated generations zero to three. TBV of all
individuals and phenotypes of individuals in generation
4 were only used to evaluate the correlations but were
not used to fit the models

Trait 0 1 2 3 4

Cont. trait

r(P,EBV) 0.70 0.70 0.68 0.69 0.52

r(TBV,EBV) 0.79 0.73 0.66 0.69 0.56

Discr. trait

r(P,EBV) 0.64 0.63 0.55 0.55 0.37

r(TBV,EBV) 0.92 0.90 0.82 0.79 0.72
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