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Abstract

Genome-wide association scans provide the first successful method to identify genetic variation contributing to risk
for common complex disease. Progress in identifying genes associated with melanoma show complex relationships
between genes for pigmentation and the development of melanoma. Novel risk loci account for only a small
fraction of the genetic variation contributing to this and many other diseases. Large meta-analyses find additional
variants, but there is current debate about the contribution of common polymorphisms, rare polymorphisms or
mutations to disease risk.

Background
Genome-wide association (GWA) methods have made
great progress in the last few years mapping genetic var-
iants contributing to risk for many common complex
diseases [1-3]. These methods developed from spectacu-
lar advances in genotyping technology, greater under-
standing of the structure of common variation in the
human genome, and continued advances in computing
power and software tools. Human populations have 10
to 15 million common single nucleotide polymorphisms
(SNPs). Analysis of patterns of SNP variation in the
human genome [4] demonstrate that a representative set
of 500,000 to 1,000,000 “tagging” SNPs can sample most
common variation. Current commercial SNP chips can
now screen genome-wide “tagging” SNPs in a single
experiment and provide an effective approach to search
for genetic variants contributing to the aetiology of
complex diseases.

Results and discussion
Pigmentation and melanoma
One example of mapping genes for related phenotypes
is the field of pigmentation and melanoma. Melanomas
([MIM 155600]) are malignant tumours of melanocytes

and susceptibility is influenced by complex relationships
between genetic and environmental factors [5,6]. Risk
factors include skin pigmentation (skin colour and tan-
ning response or phototype) and the numbers of
acquired melanocytic nevi or moles on the skin [5,6].
These intermediate phenotypes interact with the key
environmental factor, exposure to ultraviolet light.
The incidence of malignant melanoma in Caucasian

populations has increased substantially over the last 20
years [6] probably as a result of long-term changes in
sunexposure.
A number of GWA studies have been conducted

recently to improve our understanding of the genetics of
pigmentation and contributions to melanoma risk
[7-13]. Most studies have been conducted in Caucasian
populations and it is important to note that variants in
several pigmentation genes show significant differences
in frequency, and are responsible for differences in pig-
mentation between ethnic groups. Therefore, care must
be taken to avoid problems of population stratification
in the design and interpretation of studies on pigmenta-
tion and melanoma risk.
GWA studies have identified both known and novel

pigmentation genes and results have been replicated and
extended by further studies including a recent meta-ana-
lysis [14]. Genes controlling pigmentation and tanning
response include ASIP [MIM 600201], IRF4 [MIM
601900], KTLG [], MC1R [MIM 155555], OCA2 [MIM
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611409], SLC45A2 [MIM 606202], SLC24A5 [MIM
609802], SLC24A4 [MIM 609840], TYR [MIM 606033],
TYRP1 [MIM 115501]. Variants in or near genes ASIP,
KTLG, MC1R, OCA2, IRF4, SLC24A4, SLC45A2, also
affect sun sensitivity and/or melanoma risk [14].
In some cases the variants are located within coding

regions and have functional consequences [15]. How-
ever, most variants will not be causal and the association
is a consequence of linkage disequilibrium between the
marker and the causal variant(s). For example, OCA2
has long been implicated as an important gene affecting
blue/brown eye color. Genetic analysis of SNPs in the
gene HERC2 which lies upstream from OCA2 (in the
direction of transcription for OCA2) identified a single
SNP rs12913832 in intron 86 of HERC2 accounting for
most of the variation in blue/brown eye colour [16,17].
This SNP lies in the centre of a short highly conserved
sequence which forms a consensus binding site for the
helicase-like transcription factor (HLTF) and is likely to
control constitutive expression of OCA2[17]. This and
other examples demonstrate that causal variants may lie
in flanking genes. In regions of association where multi-
ple genes may influence risk of melanoma or other dis-
eases, additional studies will be necessary to determine
the likely causal variant(s) and define the gene or genes
responsible for the phenotypic effect.

Moles and melanoma risk
The most important risk factor for melanoma is the
number of acquired moles [5]. Depending on the popu-
lation under study, the risk for melanoma increases by
2%–4% for each additional mole counted and individuals
in the top 10% of the mole count distribution have a 5-
to 10- fold higher risk. Sun exposure interacts with both
pigmentation and development of moles, but there is
evidence for “divergent pathways” for the roles of UV
radiation exposure and high mole count in development
of melanoma (Whiteman 2003). Individuals with lower
melanocyte proliferation and few moles develop mela-
noma on body sites with high cumulative UV radiation
exposure while those with high melanocyte proliferation
develop melanoma on body sites with lower UV radia-
tion exposure and more moles. Total mole count has a
high heritability of ~70% [18,19] and about half the
genetic variance for mole count can be attributed to a
locus in the region of CDKN2A (MIM 600160) on chro-
mosome 9 [9,18,19]. High-penetrance coding mutations
in CDKN2A are reported in families with multiple mela-
noma cases and these families also carry greater num-
bers of nevi. However, the CDKN2A variants exist at
population frequencies of less than 0.1%, and so explain
no more than 1%–2% of melanomas in the general
population. A GWA study of mole count identified
common SNPs in MTAP (MIM 156540) associated both

with mole count and melanoma risk [9]. MTAP is
located adjacent to CDKN2A on chromosome 9p and it
is not known whether the risk alleles in the 5’ region of
MTAP act through direct effects on MTAP or through
effects on CDKN2A. The same study also demonstrated
association with mole count and melanoma risk for a
second locus on chromosome 22q13. The strongest
association signal was for a SNP in the second intron of
PLA2G6, a gene belonging to the phospholipase A2
(PLA2) super family of genes [9].
The gene IRF4 is also associated with mole count, but

shows a strong gene x age interaction [20]. The T allele
for rs12203592 located in intron 4 of IRF4 was asso-
ciated with high mole counts and high freckling scores
in adolescents, but with low mole counts and high
freckling scores in adults. The C allele (associated with
higher mole count in adults) was also associated with
melanoma risk, most significantly with melanoma on
the trunk. The gene x age interaction could easily have
been missed in a single sample combining individuals of
different age groups.
GWA studies have made good progress in identifying

genes contributing to variation in pigmentation, mole
development and melanoma risk. It is estimated that
variants so far identified for genes influencing skin, eye
and hair colour and tanning response account for about
half of the melanoma risk due to pigmentation [21]. In
contrast, only 2% of variation has been explained for
non-pigmentation factors associated with melanoma risk
including mole count. However, many of these effects
are likely to act through melanocytes and CDKN2A,
implicated directly in mole development and melanoma
risk, has associated pigmentation effects in chickens
[22]. Missense mutations in the coding region of
CDKN2A are responsible for sex-linked barring, a com-
mon plumage colour characterized by black and white
barred feathers. These studies illustrate the complex
relationships between genes and environment in pig-
mentation and the development of melanoma.

Effect size and missing variation
GWA methods have been very successful in identifying
genes and variants associated with common diseases
and these discoveries have provided new insights into
the biology of many diseases. However, the effect sizes
for individual variants are generally small with odds
ratios for the risk alleles in the range of ~1.1 to ~1.5.
Pigmentation variation has been under strong selection
and there are large effects reported for some individual
variants. In contrast, the effects of variants associated
with melanoma risk are more modest and typical of
effect sizes for variants associated with most common
diseases. Collectively, known variants for individual dis-
eases only account for a small fraction of the familial
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risk or heritability [2,3]. One approach to this problem
has been to combine results from many studies and
conduct meta-analysis of results with sample sizes of
over 100,000 individuals. This approach is only possible
for diseases or phenotypes where many samples have
been collected with the same or similar disease defini-
tions. Some recent examples include the analysis of
smoking behavior in 74,000 individuals [23], and serum
lipids in >100,000 individuals [24]. These large studies
have greatly increased power and each identify many
novel associated variants. However, in most cases the
combined results still only explain a small proportion of
the genetic variation. There has been much debate
about the source of the other “missing” variation. The
two main possibilities are that most causal variants are
not tagged well by SNPs on commercial chips (e.g.
because they occur at lower frequency or are in areas of
the genome for which it is difficult to develop SNP
assays), or genetic contributions to disease risk are due
to many variants with odds ratios so small that they do
not reach formal statistical significance despite large
GWA studies. Current commercial SNP chips generally
target common variants. Ability to tag causal variants
depends on linkage disequilibrium, in turn influenced by
differences in allele frequency between markers and low
frequency or rare variants will not be well “tagged” by
SNP markers on many current chips.

Contribution of rare variants
Contribution to disease risk in the population is a func-
tion of allele frequency and also of effect size for the
risk allele. Rare disease associated variants not tagged by
current chips can only be the source of missing herit-
ability if the risk alleles have large effects. Re-sequencing
of genomic regions uncovers new variation and there
are a number of examples where rare variants contribute
to risk for common traits. Rare variants in CDKN2A
discussed above contribute to melanoma in high risk
families, but explain little of the population prevalence
for this disease. GDF9 is expressed in human oocytes
and plays important roles in growth and selection of
ovarian follicles. A search for GDF9 variants in mothers
of spontaneous DZ twins identified three novel deletions
and four mis-sense alterations [25,26]. Taken together,
the frequency GDF9 variants were significantly higher in
mothers of DZ twins compared with controls [25,26].
However, the frequency of the variants is low (less than
4% for all variants) and the contribution of these var-
iants to the overall incidence of twinning is small. Rese-
quencing a candidate gene for type 1 diabetes detected
new variants at ~1% frequency that in total contributed
more to variation in risk in the population than a single
common variant in the same gene detected by a pre-
vious GWA study [27]. Recently, GWA identified

common variants APOA5, GCKR, LPL and APOB asso-
ciated with hypertriglyceridemia (HTG, [28]). Resequen-
cing of these genes revealed a significantly higher
burden of rare missense or nonsense variants in indivi-
duals with HTG, compared to controls corresponding to
a carrier frequency of 28.1% of affected individuals and
15.3% of controls. Common genetic variants in seven
HTG-associated loci explained ~20% of total variation
in HTG diagnosis, and the rare genetic variants in four
HTG-associated loci explained ~1% of variation. There-
fore, both rare and common variants in the same genes
can influence disease risk. Based on current examples,
the contributions from rare or low frequency variants
are similar to common variants and much variation in
genetic contributions to disease risk is still “missing”.

Common variants of small effect explain missing
heritability
Most GWA studies have examined evidence for associa-
tion SNP by SNP. An alternative approach is to analyse
data for all SNPs together to estimate the proportion of
trait variance accounted for by all common variation
“tagged” by the SNPs on current commercial SNP chips.
This is possible because the distant genetic relatedness
of individuals can be estimated from dense SNP data.
Once the degree of relatedness is established, it can be
compared to phenotypic similarity between the indivi-
duals. This method was developed and used to estimate
the genetic contribution to variation in height indepen-
dent of the usual assumptions required to estimate her-
itability using family data [29]. Using this approach, the
percentage of phenotypic variation explained by com-
mon SNPs was 45%.
This is less than the 80% of phenotypic variance due

to additive genetic effects based on the estimated herit-
ability. However, the SNPs sampled on the arrays may
not be in complete LD with the causal variants and this
might influence the results. If the estimate is corrected
first for the sampling error from using a finite number
of SNPs with genotype data, the corrected estimate for
variance explained by causal variants is 54% (assuming
the same structure of linkage disequilibrium between
causal variants and common SNPs sampled on the
arrays). In addition, if the causal variants tend to have
lower minor allele frequencies than SNPs on the arrays,
we would expect lower LD between genotyped SNPs
and causal variants [29]. When this is taken into
account, the estimated contribution of phenotypic varia-
tion explained was 84%. The standard error for this esti-
mate is large and it does not prove that causal variants
do have lower allele frequencies than tagging SNPs used
on the chips. However, if this were the case, most of the
phenotypic variation in height due to additive genetic
effects could be explained by many common variants
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with small effects [29]. Whether this applies only to
human height or more generally remains to be seen.

Conclusions
GWA studies have identified a large number of variants
associated with a range of human traits and common
diseases. However, the sizes of effects on disease risk are
typically small. Combining results across many studies
increases the power to detect risk variants and rese-
quencing is uncovering rare variants with modest con-
tributions to a number of diseases. The emerging view
from all these studies is a spectrum of many variants
with small effects explaining genetic contributions to
disease risk.
The discoveries provide new insights into the biology

of many diseases with a number of variants located in
genes that contribute to biological pathways not pre-
viously considered to be involved in disease, or located
in regions that do not contain known protein-coding
genes. Some examples like the effects of IRF4 on mole
count show interactions that would reduce estimated
effects size from large combined studies. Therefore one
important outcome of GWA studies will be to use
knowledge gained to evaluate genetic contributions to
disease sub-classes, disease heterogeneity and co-mor-
bidity for different diseases. The next challenge is how
to translate these discoveries into better diagnostic prac-
tices, preventions and treatments.

Acknowledgements
This article has been published as part of BMC Proceedings Volume 5
Supplement 4, 2011: Proceedings of the International Symposium on Animal
Genomics for Animal Health (AGAH 2010). The full contents of the
supplement are available online at http://www.biomedcentral.com/1753-
6561/5?issue=S4.

Competing interests
The authors declare that they have no competing interests.

Published: 3 June 2011

References
1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,

Manolio TA: Potential etiologic and functional implications of genome-
wide association loci for human diseases and traits. Proc Natl Acad Sci U
S A 2009, 106(23):9362-9367.

2. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP,
Hirschhorn JN: Genome-wide association studies for complex traits:
consensus, uncertainty and challenges. Nature Reviews Genetics 2008,
9(5):356-369.

3. Visscher PM, Montgomery GW: Genome-wide association studies and
human disease: from trickle to flood. JAMA 2009, 302(18):2028-2029.

4. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW,
Boudreau A, Hardenbol P, Leal SM, et al: A second generation human
haplotype map of over 3.1 million SNPs. Nature 2007, 449(7164):851-861.

5. Bauer J, Garbe C: Acquired melanocytic nevi as risk factor for melanoma
development. A comprehensive review of epidemiological data. Pigment
Cell Research 2003, 16(3):297-306.

6. Meyle KD, Guldberg P: Genetic risk factors for melanoma. Human Genetics
2009, 126(4):499-510.

7. Bishop DT, Demenais F, Iles MM, Harland M, Taylor JC, Corda E, Randerson-
Moor J, Aitken JF, Avril MF, Azizi E, et al: Genome-wide association study
identifies three loci associated with melanoma risk. Nat Genet 2009,
41(8):920-925.

8. Brown KM, Macgregor S, Montgomery GW, Craig DW, Zhao ZZ, Iyadurai K,
Henders AK, N H, Campbell MJ, Stark MS, et al: Common sequence
variants on 20q11.22 confer melanoma susceptibility. Nat Genet 2008,
40:838-840.

9. Falchi M, Bataille V, Hayward NK, Duffy DL, Bishop JA, Pastinen T, Cervino A,
Zhao ZZ, Deloukas P, Soranzo N, et al: Genome-wide association study
identifies variants at 9p21 and 22q13 associated with development of
cutaneous nevi. Nat Genet 2009, 41(8):915-919.

10. Gudbjartsson DF, Sulem P, Stacey SN, Goldstein AM, Rafnar T,
Sigurgeirsson B, Benediktsdottir KR, Thorisdottir K, Ragnarsson R,
Sveinsdottir SG, et al: ASIP and TYR pigmentation variants associate with
cutaneous melanoma and basal cell carcinoma. Nat Genet 2008,
40:886-891.

11. Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, Hankinson SE, Hu FB,
Duffy DL, Zhao ZZ, et al: A genome-wide association study identifies
novel alleles associated with hair color and skin pigmentation. PLoS
Genet 2008, 4(5):e1000074.

12. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Jakobsdottir M,
Steinberg S, Gudjonsson SA, Palsson A, Thorleifsson G, et al: Two newly
identified genetic determinants of pigmentation in Europeans. Nat Genet
2008, 40:835-837.

13. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP,
Manolescu A, Karason A, Palsson A, Thorleifsson G, et al: Genetic
determinants of hair, eye and skin pigmentation in Europeans. Nat Genet
2007, 39(12):1443-1452.

14. Gerstenblith MR, Shi J, Landi MT: Genome-wide association studies of
pigmentation and skin cancer: a review and meta-analysis. Pigment Cell
Melanoma Research 2010, Epub 14 June 2010.

15. Duffy DL, Box NF, Chen W, Palmer JS, Montgomery GW, James MR,
Hayward NK, Martin NG, Sturm RA: Interactive effects of MC1R and OCA2
on melanoma risk phenotypes. Human Molecular Genetics 2004,
13:447-461.

16. Eiberg H, Troelsen J, Nielsen M, Mikkelsen A, Mengel-From J, Kjaer KW,
Hansen L: Blue eye color in humans may be caused by a perfectly
associated founder mutation in a regulatory element located within the
HERC2 gene inhibiting OCA2 expression. Hum Genet 2008, 123(2):177-187.

17. Sturm RA, Duffy DL, Zhao ZZ, Leite FP, Stark MS, Hayward NK, Martin NG,
Montgomery GW: A single SNP in an evolutionary conserved region
within intron 86 of the HERC2 gene determines human blue-brown eye
color. Am J Hum Genet 2008, 82(2):424-431.

18. Falchi M, Spector TD, Perks U, Kato BS, Bataille V: Genome-wide search for
nevus density shows linkage to two melanoma loci on chromosome 9
and identifies a new QTL on 5q31 in an adult twin cohort. Human
Molecular Genetics 2006, 15(20):2975-2979.

19. Zhu G, Montgomery GW, James MR, Trent JM, Hayward NK, Martin NG,
Duffy DL: A genome-wide scan for naevus count: linkage to CDKN2A
and to other chromosome regions. Eur J Hum Genet 2007, 15:94-102.

20. Duffy DL, Iles MM, Glass D, Zhu G, Barrett JH, Höiom V, Zhao ZZ, Sturm RA,
Soranzo N, Hammond C, et al: IRF4 variants have age-specific effects on
nevus count and predispose to melanoma. Am J Hum Genet 2010,
87:6-16.

21. Duffy DL, Zhao ZZ, Sturm RA, Hayward NK, Martin NG, Montgomery GW:
Multiple Pigmentation Gene Polymorphisms Account for a Substantial
Proportion of Risk of Cutaneous Malignant Melanoma. Journal of
Investigative Dermatology 2010, 130:520-528.

22. Hellstrom AR, Sundstrom E, Gunnarsson U, Bed’Hom B, Tixier-Boichard M,
Honaker CF, Sahlqvist AS, Jensen P, Kampe O, Siegel PB, et al: Sex-linked
barring in chickens is controlled by the CDKN2A /B tumour suppressor
locus. Pigment Cell Melanoma Research 2010, 23(4):521-530.

23. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F,
Sulem P, Rafnar T, Esko T, Walter S, et al: Sequence variants at CHRNB3-
CHRNA6 and CYP2A6 affect smoking behavior and the risk of lung
cancer. Nat Genet 2010, 42:448-453.

24. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM,
Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, et al: Biological,
clinical and population relevance of 95 loci for blood lipids. Nature 2010,
466:707-713.

Montgomery BMC Proceedings 2011, 5(Suppl 4):S16
http://www.biomedcentral.com/1753-6561/5/S4/S16

Page 4 of 5

http://www.biomedcentral.com/1753-6561/5?issue=S4
http://www.biomedcentral.com/1753-6561/5?issue=S4
http://www.ncbi.nlm.nih.gov/pubmed/19474294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19474294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18398418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18398418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19903925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19903925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17943122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17943122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12753404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12753404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19585149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19578364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19578364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18488026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18488026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19578365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19578365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19578365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18488027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18488027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18483556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18483556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18488028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18488028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17952075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17952075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20546537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20546537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14709592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14709592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172690?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17063143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17063143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20602913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20602913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19710684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19710684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20374521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20374521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20374521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20418888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20418888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20418888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20686565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20686565?dopt=Abstract


25. Montgomery GW, Zhao ZZ, Marsh AJ, Mayne R, Treloar SA, James MR,
Martin NG, Boomsma DI, Duffy DL: A deletion mutation in GDF9 in sisters
with spontaneous DZ twins. Twin Research 2004, 7:548-555.

26. Palmer JS, Zhao ZZ, Hoekstra C, Hayward NK, Webb PM, Whiteman DC,
Martin NG, Boomsma DI, Duffy DL, Montgomery GW: Novel variants in
growth differentiation factor 9 in mothers of dizygotic twins. Journal of
Clinical Endocrinology and Metabolism 2006, 91:4713-4716.

27. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA: Rare variants of
IFIH1, a gene implicated in antiviral responses, protect against type 1
diabetes. Science 2009, 324(5925):387-389.

28. Johansen CT, Wang J, Lanktree MB, Cao H, McIntyre AD, Ban MR,
Martins RA, Kennedy BA, Hassell RG, Visser ME, et al: Excess of rare variants
in genes identified by genome-wide association study of
hypertriglyceridemia. Nat Genet 2010, 42(8):684-687.

29. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt D,
Madden PF, Heath AC, Martin NG, Montgomery GW, et al: Missing
heritability of human height explained by many genes of small effect.
Nat Genet 2010, 42:565-569.

doi:10.1186/1753-6561-5-S4-S16
Cite this article as: Montgomery: Genome-wide association studies and
genetic architecture of common human diseases. BMC Proceedings 2011
5(Suppl 4):S16.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Montgomery BMC Proceedings 2011, 5(Suppl 4):S16
http://www.biomedcentral.com/1753-6561/5/S4/S16

Page 5 of 5

http://www.ncbi.nlm.nih.gov/pubmed/15607004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15607004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16954162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16954162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19264985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19264985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19264985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20657596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20657596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20657596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20562875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20562875?dopt=Abstract

	Abstract
	Background
	Results and discussion
	Pigmentation and melanoma
	Moles and melanoma risk
	Effect size and missing variation
	Contribution of rare variants
	Common variants of small effect explain missing heritability

	Conclusions
	Acknowledgements
	Competing interests
	References

