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Abstract

Background: DNA methylation of cytosine residues in CpG dinucleotide controls gene expression and dramatically
changes during development. Its pattern is disrupted in cloned animals suggesting incomplete reprogramming
during somatic cell nuclear transfer (the first reprogramming). However, the second reprogramming occurs in the
germ cells and epigenetic errors in somatic cells of cloned animals should be erased. To analyze the DNA
methylation changes on the spermatogenesis of bulls, we measured DNA methylation levels of three repetitive
elements in blastocysts, blood and sperm.

Methods: DNA from PBLs (peripheral blood leukocytes), sperm and individual IVF (in vitro fertilized) and
parthenogenetic blastocysts was isolated and bisulfite converted. Three repetitive elements; Satellite I, Satellite II
and art2 sequences were amplified by PCR with specific pairs of primers. The PCR product was then cut by
restriction enzymes and analyzed by agarose gel electrophoresis for determining the DNA methylation levels.

Results: Both Satellite I and Satellite II sequences were highly methylated in PBLs, whereas hypo-methylated in
sperm and blastocysts. The art2 sequence was half methylated both in PBLs and sperm but less methylated in
blastocysts. There was no difference in DNA methylation levels between IVF and parthenogenetic blastocysts.

Conclusions: These results suggest that there is a dynamic change of DNA methylation during embryonic
development and spermatogenesis in cattle. Satellite I and Satellite II regions are methylated during embryogenesis
and then de-methylated during spermatogenesis. However, art2 sequences are not de-methylated during
spermatogenesis, suggesting that this region is not reprogrammed during germ cell development. These results
show dynamic changes of DNA methylation levels during bovine embryogenesis, especially genome-wide
reprogramming in germ cells.

Background
DNA methylation is a major physiological modification
in mammalian genome. Cytosine residues in CpG dinu-
cleotide pairs are selectively methylated by DNA methyl-
transferases and these methylation patterns are
maintained throughout cell division. DNA methylation
alters gene expression patterns in cells and is crucial
for normal mammalian development [1,2]. Usually, repe-
titive elements such as centromeric repeats and

transposon sequences are highly methylated and tran-
scriptionally silenced, called a heterochromatic state.
The methylation patterns are dramatically changed dur-
ing embryonic development, from a fertilized egg to a
lot of types of differentiated cells. As DNA methylation
controls gene expression, some sets of genes are acti-
vated/inactivated in particular types of cells during dif-
ferentiation. Genomic imprinting, which causes parent-
of-origin specific gene expression in mammals and X
chromosome inactivation, which compensates X chro-
mosome genes dosage between females (XX sex chro-
mosomes) and males (XY sex chromosomes), are
controlled by DNA methylation and are crucial for nor-
mal mammalian development [3]. Aberrant DNA
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methylation patterns were observed in many kinds of
tumour cells [4].
In mouse germ cells development, it was previously

shown that imprinted genes and repetitive elements
were de-methylated in primordial germ cells [5] and
then re-methylated during spermatogenesis or oogenesis
[6]. De novo DNA methyltransferases, Dnmt3a and
Dnmt3b and Dnmt3-like protein Dnmt3L are responsi-
ble for establishing sex-specific DNA methylation pat-
terns both in males and females [7-10]. After
fertilization, there is a passive DNA demethylation in
the preimplantation embryos depending on DNA repli-
cation, however, methylation of imprinted gene escapes
this genome-wide demethylation event. De novo methy-
lation begins after implantation by Dnmt3a and
Dnmt3b, and these methylation patterns are maintained
throughout development by the maintenance DNA
methyltransferase Dnmt1 [11,12]. However, little is
known about the changes of DNA methylation during
embryogenesis in cattle. Here we report the dynamic
changes of DNA methylation patterns at three repetitive
sequences in bovine blastocysts, somatic cells and
sperm.

Methods
DNA preparation
Blood and frozen sperm samples from six Japanese
Black bulls (Wagyu), two Japanese Brown bulls (Aka-
ushi) and one Holstein bull were obtained and genomic
DNA was extracted by using DNeasy Blood & Tissue
Kit (QIAGEN). Sperm DNA was extracted using the
lysis buffer with 200mM dithiothreitol (Sigma-Aldrich).
DNA from individual blastocysts was isolated as
described previously [12]. IVF and PA embryos were
produced by a standard method [13].

DNA methylation analysis
Genomic DNA was bisulfite converted by EpiTect Bisul-
fite Kits (QIAGEN) according to the manufacturer’s
instructions. Three repetitive elements were amplified
with specific pairs of primers previously described [14].
The amplified PCR products were then cut by restric-
tion enzymes (Satellite I by AciI, Satellite II by AccII and
art2 by TaqI). After digestion, each size of the digested
PCR fragments was isolated by 2% agarose gel
electrophoresis.

Results
We analyzed genomic DNA methylation patterns to
monitor the changes of epigenetic patterns during
bovine embryogenesis and spermatogenesis. We chosen
three repetitive regions; Satellite I, Satellite II and art2
sequences. Satellite sequences are repetitive sequences
at the peri-/centromeric regions of the chromosomes,

whereas art2 sequences are Alu-like short interspersed
nuclear elements (SINEs). First, we analyzed genomic
DNA of bull blood (peripheral blood leukocytes, PBLs)
and sperm for methylation status of the same regions.
We found a large difference in methylation status using
restriction enzyme analysis (Figure 1A-C). Satellite I
sequences were highly methylated in PBLs (almost PCR
fragments were cut by AciI), whereas hypo-methylated
in sperm (almost PCR fragments were not cut by AciI)
(Figure 1A). Satellite II sequences were also hyper-
methylated in PBLs but hypo-methylated in sperm (Fig-
ure 1B). However, there were no differences in art2
sequence methylation levels between PBLs and sperm
(Figure 1C). These results clearly indicated that both
Satellite I and Satellite II sequences, which are located
on the centromeric heterochromatic regions, were de-
methylated during spermatogenesis, whereas art2
sequences, which are located on euchromatic regions,
were not methylated/de-methylated during spermato-
genesis. Of nine bulls analyzed, there were no differ-
ences in DNA methylation patterns of three repetitive
elements among individuals and breeds (bulls #1 and
#6-9 are Japanese Black, bulls #3-5 are Japanese Brown
and Bull #2 is Holstein).
We also analyzed DNA methylation levels in indivi-

dual blastocysts; 10 in vitro fertilized (IVF) and 10
parthenogenetically activated (PA) embryos. Both Satel-
lite I and Satellite II regions were hypo-methylated,
whereas art2 sequences were moderately methylated in
IVF and PA blastocysts. There were no differences in
DNA methylation patterns between IVF and PA
embryos, however, some blastocysts showed more
methylated patterns (less cut by restriction enzymes)
compared to others (Figure 1A and 1B).

Discussion
This study shows the DNA methylation changes of repeti-
tive elements during bovine development. The methyla-
tion pattern differences of imprinted genes IGF2 and
SNRPN in bovine oocytes and sperm have been reported
[15,16] and the methylation levels of repetitive elements in
bovine blastocysts, especially embryos produced by
somatic cell nuclear transfer (SCNT) technology showing
high levels of DNA methylation, have also been described
[14,17]. However, the DNA methylation status of repeti-
tive elements in sperm DNA has not been well under-
stood. We found that two satellite sequences on the
centromeric regions of chromosomes, Satellite I and Satel-
lite II sequences, were highly methylated in PBLs but
hypo-methylated in sperm. As these regions were not
methylated at blastocyst stages, it is suggested that they
are methylated after implantation, and then de-methylated
during spermatogenesis. In contrast, art2 sequences were
moderately methylated in blastocysts but more methylated
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Figure 1 DNA methylation analysis in PBLs, sperm and blastocysts. Bulls #1-#9 shows each number of analyzed bulls. Uncut band indicates
the PCR product not cut by restriction enzymes. (A) Satellite I regions were cut by AciI. (B) Satellite II regions were cut by AccII. (C) art2
sequences were cut by TaqI.
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both in PBLs and sperm, suggesting this region is methy-
lated after implantation but not de-methylated during
spermatogenesis. There were no differences between IVF
and PA blastocysts, suggesting that these repetitive ele-
ments are not methylated by a parent-of-origin specific
manner. We analyzed total nine bulls with three different
breeds; six Japanese Black, two Japanese Brown and one
Holstein, however, there were no difference in DNA
methylation patterns among individuals. These results
suggest that in adults DNA methylation patterns are firmly
maintained during embryogenesis and uniformly repro-
grammed during spermatogenesis. In contrast, we
observed differences of DNA methylation patterns among
the individual IVF and PA blastocysts. This could be
explained that the variation itself confers the developmen-
tal competence of embryos because SCNT embryos with
high DNA methylation levels mostly die in utero and even
IVF embryos, only half of them transferred to the uterus
develop to term.
In SCNT embryos, Satellite I, Satellite II regions and

art2 sequences are hyper-methylated compared to IVF
embryos [14]. As donor cells also have high DNA
methylation levels, it is suggested that the first repro-
gramming step (transfer donor nucleus to the enu-
cleated oocyte) is not sufficient to fully reprogram the
donor genome. SCNT technology has been developed to
rewind the differentiation mechanism, however, the effi-
ciency of this artificial reprogramming is quite low so
that still now, more than ten years has past since the
first cloned sheep Dolly was born, the success rate of
SCNT is still less than 5-10% in cattle and other species.
This incomplete reprogramming in SCNT and the
resulting alternation of DNA methylation and gene
expression were described [18]. However, it is hypothe-
sized that the epigenetic errors that were not corrected
during the first reprogramming step are erased and then
properly reprogrammed (the second reprogramming
step) during germ cell development [19]. Therefore, off-
spring from cloned animals do not show any abnormal-
ities observed in cloned animals themselves. In fact, the
obese phenotype frequently observed in cloned mice
does not transmitted to the next generation [20]. In cat-
tle, there is no remarkable difference in health status
and food products among non-cloned, cloned cattle
developed to adulthood and their offspring [21-23]. By
applying this study for cloned cattle, it will be possible
to prove proper epigenetic reprogramming during
cloned cattle gametogenesis and thus contribute to the
normality of cloned cattle offspring.
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