Establishment of molecular markers for early selection of embryogenic cultures with high embryogenic potential in brazilian pine (Araucaria angustifolia (BERT) O. KTZE)

Leonardo Jo1*, Andre Luis Wendt dos Santos1, Paulo Sérgio Schlögl2, Miguel Pedro Guerra2, Maria Magdalena Rossi3, Eny Iochevet Segal Floh1

From IUFRO Tree Biotechnology Conference 2011: From Genomes to Integration and Delivery Arraial d’Ajuda, Bahia, Brazil. 26 June - 2 July 2011

Background

Brazilian pine (Araucaria angustifolia (Bert) O. Ktze) is the only native conifer species with economic importance in Brazil. Recently, due to intensive exploitation Brazilian pine was included in the official list of endangered Brazilian plants. Biotechnology tools, like somatic embryogenesis (SE), may become a potentially useful tool for mass clonal propagation and ex situ conservation of commercial and endangered plant species, especially conifers. SE involves the coordinated execution of four steps (embryogenic culture (EC) induction, proliferation, maturation, and plant regeneration). As observed for other conifers, the presence of well-developed early somatic embryos (SE) in EC of Brazilian pine can be considered the pre-requisite for embryo maturation in a medium supplemented with abscisic acid (ABA) and osmotic agents. However, in some genotypes even the presence of bipolar SE does not guarantee embryo maturation. Since SE morphology cannot be used as the only factor for EC selection, the development of molecular markers for early detection of embryogenic cultures responsive to maturation promoters (ABA and osmotic agents) is highly desirable. Polyamines (putrescine (Put), spermidine (Spd), and spermine (Spm)) have been classified as plant growth regulators and hormonal second-messengers playing a critical role in various growth and developmental processes in plants, such as the differentiation and development of somatic embryos. The relation Put/Spd has demonstrated the best answers for predicting embryogenic potential in different plant species. Apart from polyamines quantification, the analysis of gene expression has been used to detect the expression of embryogenesis regulating genes like somatic embryogenesis receptor kinase (SERK), wuschel-related WOX (WOX), and ABA insensitive-1 (ABI1) during conifer somatic embryogenesis. In order to develop molecular markers for early detection of EC with high embryogenic potential in Brazilian pine, we measured the polyamine content (free and conjugate) and the expression of three embryogenesis-regulating genes (SERK, WOX and ABI1) during the proliferation phase of ECs with different maturation capabilities.

Methodology

For induction of ECs, immature zygotic embryos were inoculated in MSG medium free of growth regulators supplemented with 1.46 g L⁻¹ filter-sterilized L-glutamine, 30 g L⁻¹ sucrose, 3 g L⁻¹ Gelrite® (Sigma) in the dark at 25 ±2°C. After one year of EC proliferation, maturation tests were performed using MSG semi-solid medium supplemented with 120 mM abscisic acid, 9% (w/v) maltose, 7% (w/v) PEG 4000, 3% (w/v) sucrose, and 0.15% (w/v) active charcoal. All ECs were maintained in the dark at 25 ±2°C and subcultured every four weeks by transferring ECs to fresh maturation medium. Total RNA from ECs with different maturation capabilities (0.3 g fresh weight) were extracted with Trizol® (Invitrogen, Carlsbad, CA). cDNA was synthesized using 2 μg of total RNA, digested with DNase I.
(Fermentas), and reverse transcribed with 500 ng oligo-
dT25-anchored primer (5′-T(25)VN-3′) using the High Capacity cDNA Reverse Transcription kit (Applied Bio-
systems). Primers were designed from nucleotide sequences of Brazilian pine cloned cDNA fragments. The template cDNA were synthesized and the dilutions adjusted with Ubiquitin 1 as an endogenous normaliza-
tion factor. PCR reactions were carried out in a final volume of 25 µL and the PCR products had an average length of 175 - 200 bp. The RT-PCR products were resolved on 2% (w/v) agarose gels stained with ethidium bromide and photographed. The methodology for the determination of free PAs and conjugate was based on that developed by [1]. Samples (0.2 g fresh weight) were ground in perchloric acid (PCA) 5%. The conjugated forms of the PAs were obtained by hydrolysis (18 h at 110°C) in 12 N chloridric acid (HCl). The samples were then derivatized using dansyl chloride and partitioned with toluene. PAs levels were obtained by means of HPLC using a C18 reverse phase column.

Results and discussion

Despite of the maturation capability and as observed in other conifer species, the levels of free PAs in all Brazi-
lian pine ECs tested were higher than the conjugated
form, and the most abundant PA found was Put fol-
lowed by Spd and Spm. However, ECs responsive to
maturation conditions (with development of mature
somatic embryos) showed significantly lower Put/Spd
ratios, when compared to non-responsive ECs. A similar
profile was observed in embryogenic cultures of Oryza
sativa L. [2]. In somatic embryos of Vitis vinifera, an
abnormal growth and a disorganized cellular prolifera-
tion were associated to an inadequate Put/Spd ratio [3].

Concerning gene analysis, only the expression of ABI1
gene could be detected during proliferation phase of
the ECs cultures. Although ABI-1 gene is normally asso-
ciated to events mediated by ABA [4], both ECs respon-
sive or not to ABA showed the expression of ABI1. No
expression of SERK and WOX could be detected during
the proliferation phase of ECs tested, although the ex-
pression of these genes was already detected in somatic embryos, late stage zygotic embryos and seed-
lings of Brazilian pine.

Conclusions

Based on our results, we can suggest that the Put/Spd
ratio can be used as a molecular marker for early selec-
tion during proliferation phase of Brazilian pine ECs
with high embryogenic potential. However, selected
embryogenesis regulating genes (ABI1, SERK-1, and
WOX) did not show any association with the embry-
ogenic potential in the ECs tested.

Author details

1Laboratory of Plant Cell Biology, Department of Botany, University of São Paulo, São Paulo-SP, Brazil. 2Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis-SC, Brazil. 3Laboratory of Plant Molecular Genetic, Department of Botany, University of São Paulo, São Paulo-SP, Brazil.

Published: 13 September 2011

References

regulators on the cellular growth and levels of intracellular protein,
starch and polyamines in embryogenic suspension cultures of Pinus
2. Faure O, Mengoli M, Nougarède A, Bagüés N: Polyamine pattern
and biosynthesis in zygotic and somatic embryo stages of Vitis vinifera. J.
3. Shoeb F, Yadav JS, Bajaj S, Rajam MV: Polyamines as biomarkers for plant
regeneration capacity improvement of regeneration by modulation of
polyamine metabolism in different genotypes of indica rice. Plant Science
4. Leung J, Merlot S, Giraudat J: The Arabidopsis ABSCISIC ACID-
INSSENSITIVE2 (ABI2) and ABI1 Genes Encode Homologous Protein
Phosphatases 2C involved in Abscisic Acid Signal Transduction. The Plant
