

# **MEETING ABSTRACT**

Open Access

# Evaluation of disposable filtration systems for harvesting high cell density fed batch processes

Antje Pegel\*, Friedemann Übele, Sven Reiser, Dethardt Müller, Gregor Dudziak

From 22nd European Society for Animal Cell Technology (ESACT) Meeting on Cell Based Technologies Vienna, Austria. 15-18 May 2011

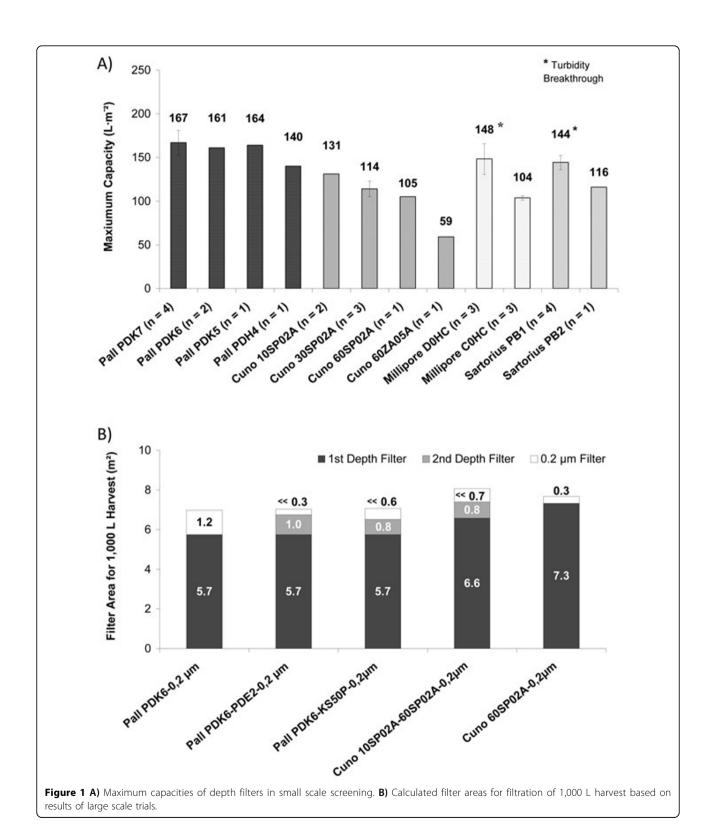
#### Introduction

In the underlying study we evaluated different single-use filtration systems for cell separation and harvest clarification in 1,000 L scale. A screening of different depth filters was carried out with various single-use filters from Pall, Cuno (3M), Millipore and Sartorius Stedim. In total, we included 85 depth filtrations in the screening. Out of that, two single-use filtration systems were

chosen and further tested in 200 L scale. Based on these results, a single-use filtration set-up for harvesting production scale fed batch processes was determined.

## Material and methods

High cell density fed batch cultivations of a monoclonal antibody (mAb) expressing Chinese Hamster Ovary (CHO) cell line were harvested by depth filtration and


Table 1 Characteristics of the different single-use depth filters

| Manufacturer                           | Material*                                           | Filter type | Retention range (μm)* | Number of filter layers* |
|----------------------------------------|-----------------------------------------------------|-------------|-----------------------|--------------------------|
|                                        |                                                     | PDK7        | 20 – 4                |                          |
|                                        |                                                     | PDK6        | 20 – 3                |                          |
| Pall<br>Seitz <sup>®</sup> HP-Series   | Cellulose,<br>Diatomaceous earth,<br>Resin          | PDK5        | 20 – 1                | 2                        |
|                                        |                                                     | PDH4        | 15 - 0.4              |                          |
|                                        |                                                     | PDE2        | 3.5 - 0.2             |                          |
| Seitz® P-Series                        |                                                     | KS50P       | 0.8 - 0.4             | <del>-</del><br>1        |
|                                        |                                                     | 10SP02A     | 7 – 1                 |                          |
| Cuno<br>Zeta Plus <sup>®</sup>         | Cellulose,<br>Diatomaceous earth,<br>Perlite        | 30SP02A     | 5 – 0.8               | 2                        |
|                                        |                                                     | 60SP02A     | 5 - 0.65              |                          |
|                                        |                                                     | 60ZA05A     | 0.8 - 0.6             |                          |
| Millipore<br>Millistak+®               | Cellulose,<br>Diatomaceous earth                    | D0HC        | 9 – 0.6               | 2                        |
|                                        |                                                     | C0HC        | 2 - 0.2               |                          |
| Sartorius<br>Sartoclear P <sup>®</sup> | Cellulose,<br>Diatomaceous earth,<br>Binding matrix | PB1         | 11 – 4                | 2                        |
|                                        |                                                     | PB2         | 8 – 1                 |                          |

<sup>\*</sup> Data according to manufacturers [http://www.pall.com, http://www.cuno.com, http://www.millipore.com, http://www.sartorius-stedim.com].

<sup>\*</sup> Correspondence: antje.pegel@rentschler.de Rentschler Biotechnologie GmbH, 88471 Laupheim, Germany





 $0.2~\mu m$  filtration after 14 to 19 days at viabilities ranging from 40 to 95 %. For the screening in 10 L scale, single-use depth filters (23 to 26 cm<sup>2</sup>) with different separation ranges were used (Table 1). Subsequently, two

disposable depth filtration systems were tested in 200 L scale using filter capsules with a filter area of 0.23 to 0.25  $\text{m}^2.$  Depth filtrates were 0.2  $\mu m$  filtered with Pall EKV (20 cm²). During filtration, a constant flow of 100

 $L \cdot m^{-2} \cdot h^{-1}$  was applied. Maximum capacities of the filters were determined at a pressure of 1 bar. Filter performance was assessed with regard to filter capacity, filtrate turbidity and product yield. Furthermore, content of DNA and Host Cell Protein (HCP) in filtrates were measured.

#### Results

### Depth filter screening

The filters PDK7, PDK6 and PDK5 from Pall showed the highest maximum capacities with 161-167 L/m² (Figure 1 A). These double layered filters had identical first membranes and differing finer second membranes. Filtrate turbidity was below 7 NTU when applying PDK6, whereas in filtrates generated with the coarser filter PDK7 turbidities up to 9 NTU were observed. Additionally, product loss with PDK6 (6 %) was lower compared with PDK7 (8 %) or PDK5 (13 %). For that reason Pall PDK6 was selected for the scale-up experiments.

Additionally, the depth filters 10SP02A and 60SP02A from Cuno were chosen. For filter 10SP02A a maximum capacity of 131  $L/m^2$  was obtained. However, the filtrate turbidity was higher than 10 NTU causing a fast blocking of the 0.2  $\mu m$  filter. Therefore, this filter was combined with the finer depth filter 60SP02A. The filter 60SP02A was selected due to turbidity values below 10 NTU and an acceptable capacity of 105  $L/m^2$  when applied stand-alone.

Turbidity breakthroughs at pressures below 1 bar were observed for the depth filters Millipore D0CH and Sartorius Stedim PB1 (Figure 1 A). Consequently, these filters were not considered for the scale-up studies.

#### Scale-up

The selected depth filters were applied in 200 L scale using the Stax<sup>™</sup> Disposable Depth Filter System (Pall) and the Zeta Plus<sup>™</sup> Encapsulated System (Cuno), respectively. Performance of depth filters was comparable in large scale and small scale. Maximum capacities in the large scale trials were 174 L/m² for Pall PDK6, 152 L/m² for Cuno 10SP02A, and 137 L/m² for Cuno 60SP02A. Product loss was below 10 %.

Based on maximum capacities filter areas were calculated for harvest in 1,000 L scale (Figure 1 B). An optimal filtration set-up leading to the lowest total filter area (6.9 m²) was found in the depth filter Pall PDK6 and a subsequent 0.2  $\mu m$  filter. Insertion of a second depth filter after Pall PDK6 reduced the area of the 0.2  $\mu m$  filter but did not affect the total filter area. The depth filter area of Cuno 60SP02A (7.3 m²) was comparable to that of the filter combination Cuno 10SP02A – 60SP02A (7.4 m²).

DNA content in the filtrate was reduced by 30 % with Pall PDK6 and even by 70 % with the additional depth filter PDE2. The Cuno depth filter combination 10SP02A – 60SP02A reduced DNA content by 99 % compared to 90 % when only applying 60SP02A. With the Pall depth filters a reduction of HCP by 30 % was measured whereas no HCP removal was observed for the Cuno depth filters.

#### Conclusion

In this concept study disposable filtration systems were successfully tested in terms of identifying suitable filtration set-ups for equipping a 1,000 L disposable manufacturing line. These single-use filtration systems can thereby replace conventional (stainless steel) disc centrifuge and filtration steps in industrial mammalian cell culture production processes. The Stax<sup>TM</sup> system from Pall equipped with the filter PDK6 followed by a 0.2 μm filtration was identified as the first choice single-use filtration set-up offering high capacities and a low product loss. Addition of a finer second depth filter can further increase filtrate clarification resulting in a reduction of DNA and HCP in filtrates and a smaller area of the subsequent 0.2 µm filter, but is also combined with a higher risk of product loss and an increased time and handling effort.

#### Acknowledgement

We thank Novartis Pharma AG for supporting this project.

Published: 22 November 2011

doi:10.1186/1753-6561-5-S8-P73

Cite this article as: Pegel *et al.*: Evaluation of disposable filtration systems for harvesting high cell density fed batch processes. *BMC Proceedings* 2011 **5**(Suppl 8):P73.

# Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

