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Background

Biopharma process development accumulates growing
collections of physicochemical product information and
fermentation data, partly in response to initiatives like
Process Analytical Technology (PAT) and Quality by
Design (QbD) backed by regulatory authorities. The key
goal of these initiatives is to ensure robust processes
and consistent product quality based on a scientific and
mechanistic understanding of the product compound
itself and of the manufacturing process. Biopharma
companies gather much high-quality data during fer-
mentations including online measurements and omics
data such as transcript and metabolite measurements.
Typically, these data will be stored for documentation
purposes only whereas data evaluation and interpreta-
tion lags behind and often is sporadic at best.

Cellular network models can tap this underused
resource for predicting fermentation outcomes and for
analyzing why certain fermentations failed or succeeded
based on a mechanistic representation of cell physiology.
In particular, network models of cell metabolism
upgrade metabolomics data by enabling predictions of
cell behavior from concentration time series of extracel-
lular and - if available — intracellular metabolites.
Model simulations can be used for rapid hypothesis test-
ing, e.g. to evaluate the impact of changes in feeding on
intracellular metabolism, growth, or product formation.
Identifying suitable metabolic target genes for cell line
engineering represents another application area of such
models. Here, we illustrate this approach using the pre-
diction of optimal media compositions for a Chinese
hamster ovary (CHO) cell line employing a genome-
based CHO network model as example.
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Methods

The CHO stoichiometric metabolic network was recon-
structed using information from public databases as well
as from primary literature and accounts for the specific
amino acid composition and glycoform structure of the
product molecule. In a first step, we applied the network
model to a comprehensive metabolic characterization of
the existing fermentation process. Rates of cellular nutri-
ent uptake, growth, and product formation in physiolo-
gically distinct process phases were determined from
concentration time series of extracellular metabolites
during a fermentation run. These cell-specific rates
served to compute intracellular flux distributions using
the CHO network model. Comparing flux distributions
for different process phases provided insight as to when
and where in intracellular metabolism significant
changes occur during the fermentation. This is often
not obvious from inspection of concentration time series
alone. Especially for fed-batch processes, multiple feed
streams and volume changes due to pH control and
sampling impede interpretation of raw data. If desired,
further information about the usage of alternative intra-
cellular pathways and in vivo reaction reversibilities can
be obtained from labeling experiments combined with
transient *C-Metabolic Flux Analysis [1,2], which is
applicable to industrial fed-batch settings.

Intracellular flux distributions also provide an ideal
starting point for process optimization. Distinct optimal
media compositions were computed for different fer-
mentation phases based on the observed nutrient
demand of the clone inferred from flux distributions.
The chosen optimization approach combines stationary
and dynamic model simulations on high-performance
computing clusters. For dynamic simulations, the stoi-
chiometric CHO network representation was trans-
formed into a kinetic model. Model parameters were
determined using evolutionary strategies and cluster
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Figure 1 Optimized fed-batch media maintained (a) high viable cell counts and (b) resulted in a 50% increase in product titer.
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computing based on the observed metabolite time series
and considering thermodynamic constraints on reaction
directionality. Integration of intracellular metabolite data
into this workflow is easy and can further increase the
predictive capabilities of the resulting model. The
dynamic model also comprised a description of the fer-
menter including feeds and sampling. In this way, it can
be predicted how changes in medium composition and
feed flows impact rates of cell growth, productivity, and
byproduct formation as well as intracellular metabolite
profiles. Finally, media were optimized to maximize final
product titer and specific productivity by varying the
concentrations of glucose and individual amino acids in
two continuous feed streams using evolutionary strate-
gies on high-performance computing clusters.

Results

The resulting optimized media were tested experimen-
tally in a fed-batch process. The improved feeding
resulted in a 50% increase of final product titer and in
an increased integral of viable cells already in the first
iteration (Figure 1). Simultaneously, ammonium release
declined markedly. If desired, the procedure can be
repeated to further optimize cellular growth and/or pro-
ductivity profiles using data collected from the first eva-
luation fermentation as input. Considering replicate
fermentations aids in assessing and improving the
robustness of the predicted media compositions, but is
not a prerequisite. The mechanistic model captures stoi-
chiometric couplings between observed substrate uptake
and resulting growth, product synthesis and byproduct
formation. Consequently, the present approach requires
much fewer fermentations runs as input for media opti-
mization compared to standard Design of Experiment
(DoE) techniques, thus saving time and resources. Pre-
sently, the prediction focuses on amino acids and

carbon sources, but the extension to further compounds
is technically straightforward.

Conclusions

The combination of metabolomics data and network
models not only improves our quantitative understand-
ing of cell physiology, but can also support and acceler-
ate multiple steps of rational process development
strategies:

+ Tailor media compositions to specific clones and
curtail the time and experimental effort required for
medium optimization compared to standard DoE
techniques

+ Identify highly productive and robust clones for
scale-up through comprehensive metabolic characteriza-
tion during selection at small scales

+ Devise cell line engineering strategies for overcoming
metabolic bottlenecks in cell growth and product forma-
tion by incorporating intracellular metabolite measure-
ments and other omics data (proteins, transcripts)

+ Employ metabolic network models for controlling
feed additions at the production scale.

The above methodology enables biologics manufac-
turers to add value to data collected in PAT and QbD
initiatives and to harness metabolomic data for quantita-
tively predicting and optimizing fermentation outcomes.
This approach is not restricted to CHO cells, but is
readily transferable to other cell lines and also to micro-
bial production strains.
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