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Abstract

Existing methods for analyzing rare variant data focus on collapsing a group of rare variants into a single common
variant; collapsing is based on an intuitive function of the rare variant genotype information, such as an indicator
function or a weighted sum. It is more natural, however, to take into account the single-nucleotide polymorphism
(SNP) interactions informed directly by the data. We propose a novel tree-based method that automatically detects
SNP interactions and generates candidate markers from the original pool of rare variants. In addition, we utilize the
advantage of having 200 phenotype replications in the Genetic Analysis Workshop 17 data to assess the candidate
markers by means of repeated logistic regressions. This new approach shows potential in the rare variant analysis.
We correctly identify the association between gene FLTI and phenotype Affect, although there exist other false
positives in our results. Our analyses are performed without knowledge of the underlying simulating model.

Background

Recent work supports the involvement of rare variants
in complex disease etiology [1-3]; despite a low fre-
quency of occurrence, rare variants may be functionally
important and may account for a detectable increase in
the relative risk of developing the outcome. Next-gen-
eration sequencing has great potential for important
applications in human genetics, including the detection
of rare variants. Several methods have been proposed to
handle rare variants in association analyses [4-7]. The
aim of these methods is to construct a set of markers
from the original single-nucleotide polymorphisms
(SNPs), using predefined groups, such as genes or
nearby genomic regions. These candidate markers are
then considered in an association analysis.

For example, a key analytical tool is the collapsing
method. Named for the collapsing of genotypes across
variants, the collapsing method uses a rare variant indi-
cator for each subject to describe the presence of rare
variants in prespecified subsets of SNPs. Li and Leal [5]
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extended the collapsing method to the framework of
multiple-marker tests, and called their method the com-
bined multivariate and collapsing (CMC) method. They
proposed dividing the markers into subgroups according
to specific criteria and then collapsing the genotypes
within each group. Morris and Zeggini’s [7] collapsing
method uses an indicator variable for the presence of
the rare variants and a quantitative variable for the pro-
portion of the variants that carry at least one copy of
the minor allele. Madsen and Browning [6] developed a
weighted-sum statistic as a groupwise association test
for rare variants. Their method constructs markers by
taking a weighted sum of the number of rare variants
from a subset of SNPs. The weights depend on the
mutation frequency in the unaffected individuals.
Although these methods are intuitive and easy to imple-
ment, they construct the markers without considering
SNP interactions.

The goal of our paper is to develop an approach that
constructs meaningful markers generated from the data.
As in previous methods, we aim to define a single mar-
ker for a set of SNPs. However, our framework focuses
on detecting the interaction among these SNPs by fitting
a phenotype association model. Interaction among a
group of SNPs describes the situation in which the joint
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influence of this group on the response variable is not
additive. Because most of the SNPs are rare, a regression
model including explicit interactions is unaffordable and
lacks power. Thus we use the recursive partitioning
method to automatically search the interactions between
the SNPs in an explicit way. Once interactions are
detected among a group of SNPs, we can define a mar-
ker specifically by these interactions.

Methods

Preprocessing

We assessed deviations from Hardy-Weinberg equili-
brium (HWE) for common variants [8]. All SNPs with a
minor allele frequency (MAF) greater than 0.05 that
failed the HWE test (p < 0.0001) were excluded from
further analysis.

We conducted an analysis to identify population stra-
tification using PLINK [9]. We then computed a similar-
ity matrix based on the pairwise identity-by-state (IBS)
distances. Next we performed a multidimensional scal-
ing (MDS) analysis on the similarity matrix. Finally, we
used the pam function (a modified, more robust con-
struction of K means) in the R package to perform a
cluster analysis with the terminal cluster number set to
3.

Combining SNPs into markers using recursive partitioning
Statistical interaction describes the situation in which
the simultaneous influence of a group of explanatory
variables on the response variable is not additive. Recur-
sive partitioning is a natural nonparametric approach to
modeling interactions among a group of variables
[10,11]. Ultimately, the recursive partitioning framework
meaningfully groups the rare variants into what are
essentially common variants. Depending on the format
of a phenotype, a classification or regression tree can be
applied. For the sake of clarity, we consider only the
simplest case: a binary classification tree for a binary
response.

We used the first replication of the phenotype in the
Genetic Analysis Workshop 17 (GAW17) data to con-
struct the classification tree. Here, Affected, denoted by
Y, is the binary outcome (case or control, or 1 or 0)
used as the response to construct the classification tree.
A single binary classification tree can be grown for all
SNPs within a shared gene. The tree grows as a result
of recursively partitioning a node by a single SNP into
two daughter nodes. Because we consider a SNP to be a
three-level factor variable X, with levels 0, 1, and 2, the
partitioning occurs when X is partitioned as {0} and {1,
2} or as {0, 1} and {2}. Once a tree model is built, each
terminal leaf node contains a set of observations, which
are predicted as case subjects or control subjects (1 or
0). This terminal node takes on the value of the
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outcome majority of observations in that node. We illus-
trate the construction of a marker using the example
tree model in Figure 1.

Suppose that the example tree shown in Figure 1 is
fitted using phenotype Y and a group of SNP variables
X1, X5, X3, and X,. Let’s consider the case that X; and
X, are used as the partitioning variables (thus X;, X5,
X3, and X, are the searched SNPs and X; and X, are the
final SNPs used in the tree). Accordingly, the tree indi-
cates an interaction between X; and X,. Suppose that
the leaf nodes 3 and 4 contain a majority of “control”
subjects; these two leaf nodes are then also considered
“control” leaves. Similarly, if leaf node 5 contains a
majority of “case” subjects, then node 5 is considered a
“case” leaf. The path to reach each of these three leaf
nodes from the initial root is described by the tree’s
three branches: {B;: X; > 0}, {By: X; = 0 and X, < 2},
{Bs: X; = 0 and X, = 2}. Thus the branches B; and B,
have the same effect direction because they both result
in a “control” prediction. Bz, however, has the reverse
effect direction because it results in a “case” prediction.
Thus a bilevel marker can be constructed: one level of
the marker represents B; and B,, and the other level of
the marker represents Bs. It is noteworthy that this bile-
vel marker is exactly the same as the fitted value of ¥
for all of the subjects.

For the GAW17 data set, each SNP belongs to one
and only one gene, thus providing a natural set of
groups, each of which can generate a tree. Therefore
each marker is defined using the fitted value of Y for

X1

{0} {1,2}

o1/ *

O

Figure 1 Example tree. An example tree fitted using phenotype Y
and a group of SNP variables X;, X5, X3, and Xs. X; and X are used
as the partitioning variables, yielding three leaf nodes. X;, X5, X3, and
X, are the searched SNPs, and X; and X5 are the final SNPs used in
the tree. The branches of this tree are grouped into two categories
depending on the prediction value (case or control) of each leaf
node. A bilevel marker is then constructed according to this
categorization of branches.

{2}




Jiang et al. BMC Proceedings 2011, 5(Suppl 9):5102
http://www.biomedcentral.com/1753-6561/5/59/5102

each gene, so long as the marker is not rare (our thresh-
old was 1 - 0.99% = 0.0199). Many genes, however, had
a very small number of SNPs (e.g., 1,226 genes had only
1 SNP and 440 genes had 2 SNPs). For these genes with
few typed SNPs, a tree can still be built using the sparse
SNPs. However, use of such SNPs in trees still generates
markers that have rare minor alleles. This motivates the
following two-step procedure to construct the markers
on a chromosome:

Step 1. For each gene on the chromosome, build a
tree model for the phenotype Affected using the SNPs
contained in that gene. Record a single marker for each
gene if the minor allele of the marker is not rare.

Step 2. For all the remaining SNPs not considered in
step 1, perform a clustering analysis to cluster nearby
SNPs on the chromosome. If the minor allele of the
marker is not rare, consider this marker in tree con-
struction from each cluster of SNPs.

Evaluating the markers by repeated independent logistic
regressions

We used only the first replication of the phenotype
Affected to construct the markers; the remaining 199
phenotype replications were used to evaluate these mar-
kers. To evaluate each marker, we fitted a logistic
regression using Affected as the response variable
against each marker, adjusted for sex, age, smoking sta-
tus, and race (ethnicity) cluster covariates.

For each marker, there are 199 p-values resulting from
the 199 independent tests. To assess the relative impor-
tance of each marker, we report the number of replica-
tions in which the marker achieves significance using a
Bonferroni correction (p < 0.05/570). As a comparison,
we make use of a false discovery rate (FDR) control [12]
and report again the number of significant replications.

Results and discussion

Of the 24,487 SNPs, 87.2% (n = 21,355) have MAF <
0.05, 74.0% (n = 18,131) have MAF < 0.01, and 38.5% (n
= 9,433) have MAF < 0.001. Those MAFs that are less
than 0.001 are all equal to 0.000717. Because we have
697 unrelated individuals, 9,433 SNPs have a single
minor allele across the whole sample, indicating that the
coded variables for these 9,433 SNPs are a vector with
696 0’s and a single 1. This is quite problematic from a
statistical point of view. Both univariate and multivariate
association analyses are drastically underpowered and
will not directly work for these particularly sparse
variables.

We conducted an analysis to identify population stra-
tification and to produce a similarity matrix based on
the pairwise IBS distances. We then used the similarity
matrix to perform an MDS analysis. The plot of the first
two MDS dimensions reveals a clear clustering structure
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of three distinct groups. The three resulting clusters
from the pam function in R almost identically match
the population structure, and three homogeneous ethnic
groups can be identified (Table 1).

We identified 570 genome-wide markers after our
two-step recursive partitioning method was carried out.
Thus the final marker set is composed of markers from
both the analysis considering SNPs in each gene sepa-
rately and the analysis considering the combination of
nearby SNPs in each cluster. Figure 2 provides two his-
tograms of SNPs in the tree construction. The left-hand
panel presents the number of SNPs that were searched
by recursive partitioning. The right-hand panel presents
the number of SNPs that were ultimately used in the
tree when constructing each marker from a pool of
SNPs (see the example tree in Figure 1). It is obvious
that the number of searched SNPs must be greater than
the number of finally used SNPs for each marker. It is
noteworthy that most of the 570 generated markers
consist of fewer than 30 SNPs, and the modest number
of involved SNPs in each constructed marker simplifies
the interpretation of the marker.

For each of the 570 constructed markers, we have 199
p-values from 199 replications. We report the number
of replications in which the marker achieves the Bonfer-
roni-corrected significance level (p < 0.05/570). Table 2
provides the 10 most frequently significant markers. The
top marker, significant in 10 (out of 199) replicates, is
derived from a tree that includes only the SNPs in the
gene FLTI, which is a true signal [13]. This positive
result demonstrates the potential of combining SNPs
according to their interactions. The remaining nine

Table 1 Populations and corresponding clusters

Population Cluster

1 2 3
CEPH-1 45 0 0
CEPH-2 44 1 0
Tuscan 62 0 0
Tuscan, additional 4 0 0
Denver Chinese 0 87 0
Denver Chinese, additional 0 20 0
Han Chinese 1 0 25 0
Han Chinese 2 0 36 0
Han Chinese, additional 0 48 0
Japanese 1 0 31 0
Japanese 2 0 41 0
Japanese, additional 0 33 0
Luhya 0 0 20
Luhya, additional 0 0 18
Yoruba 1 0 0 40
Yoruba 2 0 0 47
Yoruba, additional 0 0 25
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Figure 2 SNP numbers that were searched (left panel) and finally used (right panel) in the 570 markers. The left-hand panel indicates
that there were relatively few cases with more than 100 searched SNPs; thus we omit these in the plot for a more clear comparison. The right-
hand panel indicates the SNPs that were used to split the tree. Note that most of the 570 markers consist of fewer than 30 SNPs, which
simplifies the interpretation of the generated markers.

Table 2 Ten most frequently significant markers (Bonferroni correction)

Marker Chromosome Number of Frequency Included genes
SNPs (%)
405 13 18 10 FLTT
529 19 39 8 CYPAF22, CYP4F8, CYP4F3, CYP4F12, OR10H3, OR10H5, OR10H1, LOC646610, TPM4
528 19 30 5 ZNF627, HSZFP36, ZNF440, ZNF700, ZNF763, LOC100129837, LOC729747, ZNF20, ZNF625,

LOC730651, LOC100129686, ZNF563, ZNF564, ZNF490, ZNF791

207 7 10 5 LOC100129126, LOC728927, ZNF680, ZNF107, ZNF138, ZNF138, ZNF273, ZNF273, ZNF92, GUSB
439 16 21 4 TPSD1

296 10 53 4 TACC2

533 19 13 3 LOC100130108, ZNF99, LOC646864, LOC645118, LOC100129543

363 11 65 3 TYR, C11ORF75, MTMR2, TMEM133, MMP20, MMP27, CASP4, AASDHPPT, CUL5, ATM, LOC100128794,

CT1ORF53, BTG4, LAYN, PPP2R1B, TIC12, REXO2, FAM558, BUD13, LOC283152, CBL, MFRP, USP2,
TECTA, SORL1, PMP22CD, OR10S1, OR8G2, OR8D1, OR8D2, OR8B4, OR8BS, ORSAI, VSIG2, ESAM,
CHEK1, PUS3, CDON, SRPR, DCPS, SNX19, HNT

361 11 79 3 RIC8A, OR10A2, ZNF214, NLRP14, PPFIBP2, CYB5R2, OR10A6, RPL27A, ASCL3, RNF141, TEAD]1, PIK3C2A,
KCNJT1, USHIC, SERGEF, MRGPRX4, SAA4, SAA2, BBOX1, FSHB, KIAA1542, POLR2L, TSPAN4, MUC2,
MUCSAC, SLC22A18, OR52K1, OR52M1, OR51E1, OR51E2, OR51G1, OR51L1, OR52E2, HBB, SIRTS,
OR51B2, OR51B5, OR51B6, OR51Q1, OR5111, OR5112, UBQLN3, UBQLNL, OR52B6, TRIM6, TRIMS,
OR52N1, OR52N2, OR52E6, OR52E8, OR52E4, LOC390084, OR56A4, OR56A1, FXCI1, C110RF47,
OR2AG2, OR2AG1, OR6A2

83 2 76 3 COL6A3
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Table 3 Ten most frequently significant markers (FDR control)

Marker Chromosome Number of Frequency

Included Genes

SNPs (%)

529 19 39 18 CYP4F22, CYP4F8, CYP4F3, CYP4F12, OR10H3, OR10HS, OR10H1, LOC646610, TPMA4

405 13 18 17 FLTT

528 19 30 1 ZNF627, HSZFP36, ZNF440, ZNF700, ZNF763, LOC100129837, LOC729747, ZNF20, ZNF625,

LOC730651, LOC100129686, ZNF563, ZNF564, ZNF490, ZNF791

439 16 21 TPSDI

471 17 13 cbC27

361 1 79 8 RIC8A, OR10A2, ZNF214, NLRP14, PPFIBP2, CYB5R2, OR10A6, RPL27A, ASCL3, RNF141, TEADI, PIK3C2A,

KCNJT1, USHIC, SERGEF, MRGPRX4, SAA4, SAA2, BBOX1, FSHB, KIAA1542, POLR2L, TSPAN4, MUC2,
MUCSAC, SLC22A18, OR52K1, OR52M1, ORS1E1, ORS1E2, OR51G1, ORS1L1, ORS2E2, HBB, SIRT3,
OR5182, OR5185, OR5186, OR51Q1, OR5111, OR5112, UBQLN3, UBQLNL, OR5286, TRIM6, TRIMS,
OR52N1, OR52N2, OR52E6, OR52ES, OR52E4, LOC390084, OR56A4, ORS6A1, FXC1, C110RF47,
OR2AG2, OR2AG1, OR6A2

207 7 10 8 LOC100129126, LOC728927, ZNF680, ZNF107, ZNF138, ZNF138, ZNF273, ZNF273, ZNF92, GUSB

44 1 38 8 FNDC7, STXBP3, CELSR2, MYBPHL, SORT1, CYB561D1, AMPD2, CSF1, KCNC4

525 19 20 7 ZNF554, ZNF555, ZNF556, ZNF57, ZNF77

461 17 17 7 KCNJ12

most frequently significant markers, however, are all
false positives.

In addition to the results in Table 2, Table 3 reports
information on the 10 most frequently significant mar-
kers, as adjusted by the FDR control. Compared with
Table 2, we find that the frequency (17 out of 199) of
significant markers appearing in the 199 replicates is
higher for the marker derived from the gene FLT1. The
FDR control method increases the chance of detecting
FLTI but also increases type I errors for other false-
positive markers. Six markers (405, 529, 528, 207, 439,
and 361) overlap in both tables. There are four disagree-
ments in each table, indicating the differences caused by
different multiple testing adjustments.

Conclusions

The primary goal in handling rare variants in association
studies is to transition the data from rare to common
variants. We used the first phenotype replication to
identify interactions among SNPs on the same chromo-
some, using tree-based methods. Markers were then
naturally defined from the detected interactions. Com-
pared with previous work, this novel approach produces
meaningful markers that are informed directly by the
data, instead of combining groups of SNPs without con-
sidering interactions. The other 199 replications of phe-
notypes were then used to evaluate the set of
constructed markers. We report the 10 most frequently
significant markers in the 199 replications. The signifi-
cance threshold was adjusted by either Bonferroni cor-
rection or FDR control.

In addition to considering the binary phenotype
Affected used in our work, we can also consider the
continuous phenotypes (Q1, Q2, or Q4) in the regres-
sion tree framework. The constructed markers would

not necessarily be bilevel. Instead, the constructed
markers could be multilevel, according to the classifi-
cation of terminal nodes. We make use of the repli-
cates to evaluate the performance of the proposed
method. In real data analysis, the goal is to apply, not
evaluate, the method. For a real data set, we can first
construct the tree from the real data and then generate
more data sets under the null hypothesis by randomly
permuting the affection status. Then, we can assess the
significance of the markers in the tree of the real data
on the basis of the distribution from the permutation
data sets. We have used this technique effectively
before [14].
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