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Abstract

Using the exome sequencing data from 697 unrelated individuals and their simulated disease phenotypes from
Genetic Analysis Workshop 17, we develop and apply a gene-based method to identify the relationship between a
gene with multiple rare genetic variants and a phenotype. The method is based on the Mantel test, which assesses
the correlation between two distance matrices using a permutation procedure. Using up to 100,000 permutations to
estimate the statistical significance in 200 replicate data sets, we found that the method had 5.1% type I error at an a
level of 0.05 and had various power to detect genes with simulated genetic associations. FLT1 and KDR had the most
significant correlations with Q1 and were replicated 170 and 24 times, respectively, in 200 simulated data sets using a
Bonferroni corrected p-value of 0.05 as a threshold. These results suggest that the distance correlation method can
be used to identify genotype-phenotype association when multiple rare genetic variants in a gene are involved.

Background
Genome-wide association studies have successfully iden-
tified hundreds of novel genetic loci associated with com-
mon diseases; however, only a small portion of the
heritability can be explained by these associated common
variants. An alternative but not mutually exclusive
hypothesis to account for a sizable proportion of genetic
susceptibility to common diseases proposes a summation
of effects of rare variants in many genes, each conferring
an increase in relative risk. In contrast to common var-
iants associated with small effects, rare variants located
in a functional region (e.g., exons) are more likely to
cause functional effects themselves.
As a result of the low allele frequencies, traditional

regression-based methods do not work well with the rare
variants derived from the sequencing data. A few meth-
ods have been developed to address this challenge by
summarizing individual rare variants for association ana-
lysis; they are reviewed in a Genetic Analysis Workshop

17 (GAW17) summary paper [1]. For exome sequencing
data, a convenient unit of summarizing genetic variants
is the gene. GAW17 provides exome sequencing data
from the 1000 Genomes Project and simulated phenoty-
pic traits, both binary and quantitative.
In this study, we explore the gene-based analyses to iden-

tify genes associated with these traits by summarizing all
rare variants within a gene. We develop a gene-based
method by testing the correlation between the dissimilarity
(measured as pairwise distances between subjects) of the
trait and the genotype. We hypothesize that subject pairs
that have similar phenotypes will also have similar geno-
types within certain genes and conversely that subject pairs
with dissimilar phenotypes will have dissimilar phenotypes.
Based on the Mantel test [2], we perform a series of ana-
lyses to identify genotype-phenotype associations of this
type. With up to 100,000 permutations to compute the
empirical p-values, using this approach, we were able to
identify genes that as a whole were associated with the
simulated traits after correcting for multiple testing. We
also examine the type I error rate and power of the Mantel-
based method using the GAW17 simulation answers.
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Methods
Data
In this study, we use the data set with 697 unrelated indi-
viduals provided by GAW17 to conduct the gene-based
analysis. The genotypes, sex, and population data of these
individuals are from the 1000 Genomes Project [3]. Two
hundred replicates of the trait simulation were carried out.
The genotypes were held fixed for all 200 simulation repli-
cates. There are 24,487 autosomal SNPs on 3,205 genes
available. For each SNP, the name of the SNP, its chromo-
some and base-pair position, the name of the gene in
which it is located, whether the SNP is synonymous or
nonsynonymous, and the minor allele and minor allele fre-
quency (MAF) were also provided. Three quantitative
traits (Q1, Q2, and Q4) and a binary trait (Affected, coded
0 = no and 1 = yes) were available for each replicate. The
Age and Sex variables were fixed across all 200 replicates,
and the smoking status covariate, Smoke, varied across the
replicates [4].
Among the 24,487 SNPs, 87.2% (21,355) have MAF <

0.05, 74% (18,131) have MAF < 0.01, and 38.5% (9,433)
have MAF < 0.0008 (singleton). In terms of the putative
function, 13,572 SNPs are nonsynonymous, 10,113 SNPs
are synonymous, and 802 SNPs have unknown functional
annotation. SNPs with MAF < 0.05 (rare SNPs) were
included in this study. A total of 21,355 rare SNPs on
2,881 genes were available for the primary gene-based ana-
lysis. The nonsynonymous SNPs with MAF < 0.05 were
analyzed separately to understand the effect of the putative
function of SNPs. A total of 12,193 nonsynonymous rare
SNPs on 2,015 genes were included for the secondary
gene-based analysis. Seven hundred ten genes had only
one nonsynonymous SNP, and the highest number of
nonsynonymous SNPs within a gene was 151.

Mantel test of correlation between data matrices
The Mantel test is a statistical test of the dependence
between the elements of two matrices [2]. Usually, the two
matrices contain data from multiple variables obtained on
a common sample of subjects. The rows of the two
matrices correspond to the subjects in the same order, and
the columns contain data on the two sets of variables. For
n subjects with two variables X and Y, we first calculate
two distance matrices, each with n × (n − 1)/2 pairwise
distances. The Mantel statistic is based on a cross-product
term:
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where X and Y are variables measured for the subjects,
n is the number of subjects in the distance matrices, and
Xij and Yij are the pairwise distances between subject i

and j for variables X and Y. Because the elements of a
distance matrix are not independent, it is not straight-
forward to determine the significance level for the corre-
lation (i.e., Mantel statistic Z) between two distance
matrices. The Mantel test provides an alternative way to
quantify the dependence and provides a significance
level that is usually evaluated with a permutation proce-
dure. Mantel’s statistics Z are computed for each per-
muted distance matrix by shuffling the rows and
columns. The distribution of Z’s is generated by a large
number of iterations.
Although the Mantel test was initially developed to

identify the space-time clustering in epidemiological
data, it has been widely adopted in other fields, such as
ecology [5,6]. The Mantel test has also been applied in
studies of gene expression profiles and genetics of
human diseases [7,8]. Beckmann et al. [8] demonstrated
that the Mantel test has better power than the chi-
square test for gene mapping using haplotype sharing as
a measure of genetic similarity.

Application of the Mantel test for identifying gene-based
correlations
For a given gene, the genetic distance between each pair
of subjects (i.e., Xij) is calculated using the sum of differ-
ences of the additive effects on each rare SNP. For a
SNP, the distance between two homozygotes (AA and
aa) is 2 and the distance between a homozygote (AA or
aa) and a heterozygote (Aa) is 1. The genetic distance
on the gene level equals the sum of the genetic distance
of individual SNPs. For a gene involving two biallelic
loci, A/a and B/b, the genetic distance between a pair of
individuals ranges from 0 (same genotype) to 4 (AABB
vs. aabb).
We calculate the distance matrices of all rare SNPs

(MAF < 0.05) and nonsynonymous SNPs separately for
each gene. The phenotypic distance (i.e., Yij) equals the
absolute difference of the phenotypic values for a pair of
individuals (|Yi − Yj|). For the quantitative trait Q1, we
calculate the phenotypic distances among the unad-
justed measurements and their Age, Sex, Smoke, and
population stratification adjusted residues. For a binary
outcome, the distance between a case subject and a con-
trol subject is 1, and the distance among case subjects
or among control subjects is 0. Using both the genetic
and phenotypic distance matrices, we calculate the Man-
tel statistic Z in Eq. (1) for each gene and a trait.
To estimate the statistical significance of the Mantel

statistic Z, we first run 500 permutations to compute the
empirical p-value for each gene with at least one rare var-
iant. For genes with a permutation p-value less than
0.002, we rerun the permutation test 100,000 times to
obtain a greater precision of the p-value as low as 10−5.
We calculate type I error using quantitative trait Q4,
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which has no association with the genetic variants, in 200
replicates. We also calculate the power for the nine genes
with causal SNPs of quantitative trait Q1 using three sig-
nificance thresholds (0.05, 0.001, and 0.0001). All statisti-
cal analyses were conducted using statistical software R,
version 2.10. The Mantel test was implemented in R
library ade4 [9].

Results
Because of the availability of the underlying genetic
model of simulation for GAW17, we first examined the
type I error and power of our gene-based method. Using
Q4, which has no simulated genetic associations, we esti-
mated that the mean of the type I error (a level of 0.05)
for our Mantel test–based method was 0.051 in 200 repli-
cate data sets. The power analysis of this method is sum-
marized in Table 1. By combining the nonsynonymous
SNPs with MAF < 0.05 of a gene, we were able to calcu-
late the true-positive rate of the nine genes with simu-
lated genetic associations. Each gene included at least
one causal SNP with various effect sizes. At an a level of
0.05, three genes were identified with reasonable power:
100% power for FLT1, 96% power for KDR, and 78%
power for VEGFC. Considering a large number of tested
genes in this study, we also examine the power at a levels
of 0.001 and 0.0001. We have power to detect only FLT1
using these lower thresholds (Table 1).
Following the procedure described in the Methods sec-

tion, we next tested the association between the genetic
dissimilarity of each gene and the phenotypic dissimilarity
represented by the distance matrices of Q1 and Affected.
After excluding all common SNPs, we conducted the
gene-based analysis using either all SNPs or only nonsy-
nonymous SNPs for each trait, using up to 100,000 per-
mutation tests. For the quantitative trait Q1, we also
considered models with and without adjustment of covari-
ates (Age, Sex, Smoke, and population stratification).
The most significant association results (significantly

associated with the outcome more than 10 times out of

200 replicates, i.e., 5%) of the four models, three for Q1
and one for Affected, are summarized in Table 2. Using a
stringent significance threshold of a Bonferroni-corrected
p-value of 0.05 (empirical p-values of 1.74 × 10−5 for
SNPs with MAF < 0.05 and 2.48 × 10−5 for nonsynon-
ymous SNPs with MAF < 0.05), we identified four genes
associated with Q1 and one gene associated with Affected
in more than 10 of the 200 simulated data sets. Without
any adjustment of covariates, FLT1 (32 rare SNPs),
PIK3C3 (7 rare SNPs), KDR (15 rare SNPs), and PRR4
(17 rare SNPs) were significantly associated with Q1 49,
13, 12, and 11 times, respectively, out of 200 simulation
data sets. With adjustment of Age, Sex, Smoke, and the
first two principal components of all SNPs (representing
population stratification among subjects), FLT1 was sig-
nificant 39 times. When we tested the gene-based asso-
ciation by considering only nonsynonymous SNPs, we
found that FLT1 (19 nonsynonymous SNPs) and KDR
(10 nonsynonymous SNPs) were significant 170 (85%)
and 24 (12%) times, respectively. For the binary outcome
Affected, no gene was significant more than 10 times
among 200 simulated data sets using all SNPs with MAF
< 0.05. The most significant genes, MAP3K12 (17 rare
SNPs) and PIK3C2B (62 rare SNPs), were significant 10
and 5 times, respectively. When we restricted the analysis
to only nonsynonymous SNPs, we found that FLT1 (19
nonsynonymous SNPs) was significant 13 times.

Discussion
The exome sequencing data measure a large number of
rare variants in which a subset may be jointly associated
with disease phenotypes. The gene-based analyses can
divide these rare variants into genes as a unit and imply a
relationship between a gene and a phenotype. In this
study, we developed a gene-based Mantel test to assess
the correlation between a phenotype and all rare variants
of a gene. The Mantel test is capable of evaluating the
relationship between the distance matrices of phenotype
and genotype using a permutation process. Although this

Table 1 Power of identifying nine genes with simulated genetic association

Gene Power Number of causal SNPs/total SNPs

a = 0.05 a = 0.001 a = 0.0001 All SNPs MAF < 5% MAF ≥ 5%

ARNT 0.255 0 0 5/18 5/17 0/1

ELAVL4 0.01 0 0 2/10 2/8 0/2

FLT1 1 0.97 0.95 11/35 10/32 1/3

FLT4 0.135 0.01 0 2/10 2/10 0/0

HIF1A 0.17 0 0 4/8 4/8 0/0

HIF3A 0.09 0 0 3/21 3/17 0/4

KDR 0.955 0.525 0.245 10/16 9/15 1/1

VEGFA 0.225 0.005 0.005 1/6 1/6 0/0

VEGFC 0.775 0 0 1/1 1/1 0/0
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method can be applied to summarize any type of genetic
variant, including common variants within a genomic
region, in this study we focused on identifying rare var-
iants, which may not have sufficient power to be detected
individually. We applied this method to the GAW17
unrelated individuals data and identified genes with rare
SNPs that were significantly correlated with one quanti-
tative trait and the binary trait. Using the 200 simulated
data sets and comparing with the underlying genetic
models, we found that this method had an expected type
I error rate and that the power to detect gene-level asso-
ciation of rare variants depended on the number of cau-
sal rare variants and their effect size. When an
appropriate subset of SNPs, such as SNPs with low MAF
and nonsynonymous SNPs, and an appropriate adjust-
ment model were selected, the method had improved
performance in detecting the associated genes. Using the
stringent Bonferroni correction for multiple testing
implemented in this study, we were not surprised by the
number of false negatives. Using a less stringent correc-
tion for multiple testing (e.g., false discovery rate q-value)
may help to reduce the false-negative rate.
The method we implemented here provides an alterna-

tive way to test the relationship between a phenotype and
all genetic variants located within a gene. The Mantel
test is designed to identify not only the association
between predictors and outcome but also the clustering
of the events within the predictor-outcome space [2]. In
addition, this framework is flexible so that any set of rare
variants can be combined to test their joint correlation
with a phenotype. For example, we can test the hypoth-
esis involving all genes in a known pathway, a biological
network, or any set of genes grouped by a proposed
mechanism. Another advantage of our method is its cap-
ability of handling different genetic models. Here, we
coded the genotypes using an additive effect model and
calculated the distance matrix of a gene. Similarly, we

could have tested the correlation of the dominant or
recessive effects by modifying the coding of the geno-
types and calculating the new genetic distance matrices.
The Mantel test assesses a global-level relationship (i.e.,

correlation) for all variables. It cannot select the most
influential independent variables. In this study of exome
sequencing data, we could make inferences on the gene
level but were limited in how much we could narrow
down the list of causal variants under the framework of
the Mantel test. Combining our gene-based approach with
variable selection or ordination methods may facilitate the
process of uncovering causal variants of human disease. In
the analyses for identifying genes with multiple rare var-
iants jointly correlated with disease traits using the exome
sequencing data, we believe that the Mantel test can play
an important role in understanding the complicated
genetic effects of rare variants. Further developments are
needed to extend the utility of the Mantel test in whole-
exome sequencing data and for fine mapping of causal
variants.
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