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Abstract

Advances in next-generation sequencing technology are enabling researchers to capture a comprehensive picture
of genomic variation across large numbers of individuals with unprecedented levels of efficiency. The main analytic
challenge in disease mapping is how to mine the data for rare causal variants among a sea of neutral variation. To
achieve this goal, investigators have proposed a number of methods that exploit biological knowledge. In this
paper, I propose applying a Bayesian stochastic search variable selection algorithm in this context. My multivariate
method is inspired by the combined multivariate and collapsing method. In this proposed method, however, I
allow an arbitrary number of different sources of biological knowledge to inform the model as prior distributions in
a two-level hierarchical model. This allows rare variants with similar prior distributions to share evidence of
association. Using the 1000 Genomes Project single-nucleotide polymorphism data provided by Genetic Analysis
Workshop 17, I show that through biologically informative prior distributions, some power can be gained over
noninformative prior distributions.

Background
Genome-wide association studies (GWAS) have been a
powerful method for revealing common variants that
confer a modest increase in disease risk in carriers. In
general, the single-nucleotide polymorphisms (SNPs)
that show the strongest evidence for association in
GWAS do not perfectly tag the putative causal variant
(s) nearby because of ancestral recombination events;
therefore resequencing in these regions is necessary to
resolve the precise location of the causal variant(s).
Dickson et al. [1] postulated one possible explanation
for why many fine-mapping efforts have failed to map a
single causal SNP in the region tagged by the original
genome-wide association signal: multiple rare variants
(MRVs) residing on multiple haplotypes at the region of
the genome-wide association signal are generating a
“synthetic” association when these haplotypes share a
common allele that is observed more in case subjects
than in control subjects. In support of the MRV

hypothesis, several investigators have recently developed
a number of popular burden-type methods [2-4]. These
methods are predicated on the notion that presence of
or an increase in the number of mutations for a person
at a particular pathway, region, gene, or any other biolo-
gical unit can serve as a reasonable proxy for his/her
risk of developing disease. The common theme among
these methods is that the genotypes for MRVs that map
to these biological units, called bins, are collapsed into a
single vector of scores, a technique that can potentially
improve statistical power to detect disease association.
For example, in the combined multivariate and collap-
sing (CMC) method of Li and Leal [2], a score for an
individual is assigned 1 if at least one mutation is
observed across all SNPs within a bin, or 0 otherwise.
The significance of a gene, for example, can then be
tested by jointly modeling all bins that map within the
gene using a multivariate method such as Hotelling’s
multivariate T-test, logistic regression, or linear
regression.
In this paper, I describe how I adapted the concept of

the CMC method into a Bayesian variable selection
algorithm with the notion that common SNPs may also
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contribute valuable information to nearby causal rare
variants, assuming that the shared haplotype model [1]
is true. The exon resequencing data set provided by the
organizers of Genetic Analysis Workshop 17 (GAW17)
provides an ideal opportunity for evaluating the perfor-
mance of this new approach.

Methods
Details of the simulated GAW17 data set can be found in
this same issue [5]. I defined variants that had a minor
allele frequency (MAF) less than 0.01 to be rare but
potentially the most biologically interesting, because
extremely rare mutations are expected to have the great-
est deleterious effects on phenotype. Of all the SNPs pro-
vided in the data set, 73% (18,131) fall within this MAF
range. For each gene, I applied the collapsing procedure,
as described in the CMC method [2], by grouping rare
SNPs into one of two bins defined by their predicted
impact on protein (i.e., synonymous or nonsynonymous
variant). Any bin with a MAF less than 0.01 after the col-
lapsing procedure was not included for further analysis.
Common SNPs, defined as those having a MAF ≥ 0.01,
were not collapsed with any other SNPs in the gene. For
conciseness, I use the term variable to define either a sin-
gle common SNP or a SNP bin. The final marker panel
included 7,385 variables: 1,029 bins containing collapsed
rare variants and 6,356 bins containing common SNPs. I
experimented with higher threshold values for bin defini-
tion (e.g., MAF = 0.05), but this strategy did not recover
an appreciable number of bins from the filtering step
because most genes in the data set were small and har-
bored private mutations. True log relative risks (denoted
b) for each SNP are provided in the simulation answer
key, which quantifies each SNP’s effect on the quantita-
tive traits Q1 and Q2. Thus, to assess how accurately my
method can recover the true values of b at each SNP, I
constrained the analyses only to models where the out-
come phenotype was either trait Q1 or Q2.
The statistical model I used was a two-level hierarchi-

cal model, described in detail by Chen and Thomas [6].
One property of a hierarchical model that is appealing
when analyzing variants of low frequency, where maxi-
mum-likelihood estimates (MLEs) of association b̂b can
be highly unstable, is the ability to smooth these point
estimates (and their variances) toward prior distributions
defined in a second level. At the first level, I apply
ordinary least-squares regression, which produces MLEs
of association between a continuous trait (i.e., either Q1
or Q2) and a random set of m model variables. A design
matrix X stores the variable values, and the vector Y
stores values of Q1 or Q1 across all individuals:

Y X= +bb bb0 1, , .m (1)

I define a prior distribution on b in Eq. (1) using the
annotation information provided by GAW17. For vari-
able k, bk is distributed as a mixed-effects model, origin-
ally defined by Besag et al. [7] as:
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where the latent fixed effect is π and the random
effects components are:
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The Z matrix stores external knowledge about each of
the m variables currently in the model. To encode my
belief that deleterious mutations would have higher or
lower values of b relative to other types of mutations, I
assigned a value of 1 to the nonsynonymous mutation
in the second column (after reserving the first column
as the intercept) of the m × 2 design matrix Z and a
value of 0 for any other SNP category. The term π, esti-
mated using ordinary linear regression, relates the mag-
nitude of b in Eq. (1) to values in Z. Furthermore, to
encode my belief that mutations within the same gene
should have similar effects on disease, I specified an
indicator encoding whether predictor k and any other
model variables are in the same gene by means of a k ×
k adjacency matrix A. Specifically, the parameter j−k
stores the mean of the MLE b̂b from the first level,
taken across neighbors of variable k (i.e., all other vari-
ables that are in the same gene) defined by means of A.
The variance term τ2 is inversely scaled by vk, the num-
ber of neighbors of k to weight the uncertainty about τ2.
Finally, θk soaks up any remaining variation in the sec-
ond level of the model through the variance term s2.
A posterior density is defined on the basis of the likeli-

hood and normal density function corresponding to the
first (Eq. (1)) and second (Eq. (2)) levels of the hierarchi-
cal model. I use the product of this density function and
a model transition function as the objective function of a
reversible jump Monte Carlo Markov chain (MCMC)
algorithm to stochastically explore the search space,
fitting all possible sets of model variables to the data. The
model transition kernel itself is informed through empiri-
cal Bayes estimates of the hyperparameters (e.g., π), so
that regions of the search space that have strong empiri-
cal support and prior evidence are prioritized. Further
details on how the variable selection algorithm works can
be found in Chen and Thomas [6].
In the next section I present results between a more

conventional method and my proposed method. The
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first method is an ordinary least-squares regression
between the quantitative trait (i.e., Q1 or Q2) and each
vector of variable scores, which I denote as the MLE
method. This approach is equivalent to a conventional
genome-wide association scan, testing for marginal
effects. I compared this to four variations of the multi-
variate MCMC method. Specifically, I varied the degree
of informativeness in the prior distribution by modifying
the definition of the matrices A and Z. The most infor-
mative prior distribution (denoted FULL) stores both
gene membership and SNP mutation type information
in the A and Z matrices, respectively. In the second var-
iant of the prior distribution (denoted Z only), I
removed gene membership information so that matrix
A was simply the identity matrix. Conversely, in the
third variant of the prior distribution (denoted A only),
I removed mutation class information so that the Z
matrix included only the intercept. The last variant of
the prior distribution (denoted UNINF) includes both
the uninformative Z and A matrices and is equivalent to
a the ridge style prior distribution (i.e., b ~ N(0, s2 )).
For each of the MCMC analyses, I sampled 2 million

realizations from the posterior distribution, retaining
statistics on only the last million realizations to mini-
mize any correlation to the initial parameter values. Run
time on a 2-GHz Xeon processor was approximately 8
h. I verified that the retained statistics reached conver-
gence by comparing their distributions across multiple
chains using a nonsignificant p-value extracted from the
Kolmogorov-Smirnov test.
To quantify evidence for any specific variable (either

common SNP or SNP bin), I empirically estimated
Bayes factors (BFs) for each variable by dividing the pos-
terior odds by the prior odds, as described by Chen and
Thomas [6]. BFs quantify the increase in evidence for a
hypothesis (in this case, inclusion of a variable into the
model) in light of observed data relative to a prior
hypothesis [8].

Results
Table 1 lists the posterior estimates of the various
hyperparameters of the hierarchical model under the
FULL prior distribution specification. For either of the
two quantitative traits, the residual variance (τ2) in the
random effects component was smaller than the residual
variance from the fixed effects component (s2), indicat-
ing a good fit between the gene-membership prior

distribution and the observed data. The posterior esti-
mates for the prior mean (π) indicate a slightly positive
correlation (0.03) between disease risk and presence of a
nonsynonymous mutation, although the evidence is
weak considering the large standard errors (0.06).
As alluded to earlier, hierarchical modeling shrinks

unstable MLEs toward means informed through either
informative or noninformative prior distributions. I con-
sidered two metrics that measure the accuracy of a
method’s estimation of the true effect size: the mean
coverage rate (MCR) and the root mean-square error
(RMSE). I defined the MCR as the proportion across all
causal SNPs and simulation replicates where the true
value of b falls within the 95% confidence interval of the
estimator. Thus a perfect estimator would have a value
of 1. Hierarchical modeling achieved an MCR of 0.91
under the Q1 disease model, in contrast to an MCR of
0.56 when applying maximum likelihood. The second
metric I considered, RMSE, is calculated by taking the
square root of the average squared difference (also taken
across all markers and replicates) between the estimated
and true values of b. A smaller value of the RMSE indi-
cates a more precise estimation of the true effect size.
Under the Q1 disease model, the RMSE for the hier-
archical model was 0.17, whereas for the maximum-like-
lihood model it was 0.38. When Q2 was the disease
model, the RMSE and MSE were similar (within ±0.01),
approximately 0.17 and 0.94, respectively, regardless of
which method was used. Table 2 presents a list of causal
variables under the Q1 disease model, indicating that
several SNPs at the FLT1 gene were poorly estimated
using maximum likelihood.
I next evaluated the ability of the MCMC sampler to

perform variable selection by comparing sensitivity and
specificity across the four variants of the prior distribu-
tion. The receiver operating characteristic (ROC) curves
in Figures 1 and 2 illustrate power across various false
discovery rates for traits Q1 and Q2, respectively. As

Table 1 Posterior estimates of hyperparameters

Parameter Trait Q1 Trait Q1

τ2 0.006 0.006

s2 0.01 0.01

π (SE) 0.03 (0.06) 0.02 (0.06)

Table 2 Accuracy of estimates of b for trait Q1 between
maximum-likelihood estimate (MLE) and hierarchical
modeling (HM) estimates

Variable Mean square error Mean coverage ratea

MLE HM MLE HM

C1S6521 0.196 0.046 0.68 0.94

C13S398 0.069 0.036 0.90 0.93

C13S515 0.300 0.029 0.07 0.92

C13S522 0.126 0.037 0.06 0.71

HFE, nonsynonymous 0.218 0.033 0.63 0.98

KCTD14, nonsynonymous 0.007 0.009 0.91 0.84

C4S1878 0.102 0.024 0.7 0.95
a Proportion of replicates where true b falls within the 95% confidence
interval.
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one might expect, introducing informative prior distri-
butions into the model improves power to detect causal
variants. Gene membership information as encoded in
matrix A proved to be the most critical component for
power overall. When Q2 was used as the outcome phe-
notype, the method showed greater sensitivity than the
MLE method across all false discovery range (FDR)

values, regardless of the prior distribution specification.
Q1 performed slightly worse than the MLE at low FDRs
when gene membership information was omitted from
the prior specification. Table 3 summarizes the relative
differences in power at FDR = 0.05 between the MLE
and my approach.
I noted a wide range of evidence across the variables

considered. Tables 4 and 5 present a comparison of BFs
across the various prior specifications in the variable
selection algorithm for each causal variable that was
included in the analysis. Although guidelines for BF
interpretation [8] deem several variables to be “barely
worth mentioning” (BF range, 1 to 3), others could be
considered “decisive” (BF > 100). Under Q1, evidence of
association was strongest for the C13S431, C13S522,
and C13S523 SNPs in the FLT1 gene, which had more
“common” MAFs of 0.02, 0.03, and 0.07, respectively.
These same SNPs also had fairly large simulated odds
ratios (2.1, 1.9, and 1.9, respectively), which most likely
explain the improved overall performance of all the
methods under the Q1 model, as shown in Figures 1
and 2, in contrast to the Q2 model, whose disease
model was more challenging. The only SNP under the
Q1 model that was more common than these three
SNPs was C4S1878 (MAF = 0.16). A relatively moderate
BF of 107 at this SNP reflects its modest simulated odds
ratio of 1.1. The A matrix information, which helps dis-
tribute evidence of association across a gene, was advan-
tageous for SNPs within FLT1. In contrast, for SNPs in
other genes, the Z matrix, which enables variables of the
same mutation type to share a common mean, improved
the method’s power to detect causal variants, as seen in
the higher BFs in column 2 versus column 3 in Tables 4
and 5. This observation was not too surprising, consid-
ering the fact that the simulation model considered only
nonsynonymous mutations to be causal.

Discussion
In response to the missing heritability mystery plaguing
the field of complex trait genetics, there is understand-
ably massive interest in developing methods that can
effectively investigate the relationship between rare var-
iants and disease. In the methods described by Madsen

Figure 1 Receiver operating characteristic curve under
polygenic disease model for trait Q1. The proportion of causal
variants is plotted as a function of the proportion of noncausal
variants, taken across 200 replicates.

Figure 2 Receiver operating characteristic curve under
polygenic disease model for traitQ2. The proportion of causal
variants is plotted as a function of the proportion of noncausal
variants, taken across 200 replicates.

Table 3 Relative power (in relation to the maximum-
likelihood estimate) of hierarchical modeling method at
FDR = 0.05

Variation Trait Q1 Trait Q2

UNINF 0.94 1.14

Z only 0.98 1.17

A only 1.04 1.17

FULL 1.05 1.19

FDR, false discovery range.
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and Browning [3] and a more recent refinement
described by Price et al. [4], common SNPs are down-
weighted on the assumption that their effect sizes are
expected to be smaller than their rarer neighbors.
Details on these approaches are found in Dering et al.
[9]. A one degree of freedom test is carried out at the
gene level or other biological unit rather than at the
SNP level. These methods are appealing because power
can be increased as a result of fewer multiple hypotheses
to adjust for. I took a somewhat different approach that
was closer in spirit to the CMC method [2]. Like the
CMC approach, my method operates within a multivari-
ate framework so that multiple bins within a gene can
be considered; this allows one to test multiple hypoth-
eses and to refine the signal, albeit at a statistical cost
resulting from multiple comparisons. In contrast to the
Madsen and Browning [3] and Price et al. [4] methods,

I do not down-weight SNPs of higher frequency. In fact,
I believe that if there is a shared haplotype effect among
case subjects, then these common SNPs can aid in dis-
covery of rarer neighbors through an appropriate prior
specification (e.g., the A matrix in the hierarchical
model). With any type of collapsing strategy, including
mine, the choice of how bins are defined is arbitrary
and some type of permutation procedure is necessary to
alleviate an increase in type I error from overfitting the
data. My Bayesian method, while also computationally
expensive, does not involve permutation. Through Bayes
model averaging and reporting of BFs, the problem of
model overfitting is handled naturally. I previously
demonstrated through simulations that the model is
robust in light of multiple comparisons within the con-
text of discovering interactions [6].
The results from the analyses show that in certain

cases, such as when Q1 is modeled as the outcome, rare
variants can make accurate estimates of effect size diffi-
cult when operating under a conventional MLE frame-
work. Hierarchical modeling can be particularly helpful
here, even if the prior distributions are not particularly
informative. However, I must provide an important
caveat that the method, which still operates under a
standard multivariate regression framework at the first
level of the model, does not appear to work particularly
well when rare variants (i.e., omitting a collapsing strat-
egy), such as singleton mutations, are directly tested;
convergence problems usually emerge when the design
matrix becomes numerically singular. Thus I was unable
to directly evaluate the method’s performance on any
one specific SNP among the extremely rare causal var-
iants. The LASSO (least absolute shrinkage and selec-
tion operator) method [10], another flavor of penalized
regression that provides variable selection, has recently
been extended to allow one to directly test any rare var-
iant by defining bins (e.g., genes) that relax the global
penalization parameter [11]. Although my approach is
more limited in this sense, my model allows the investi-
gator to include an arbitrary number of prior knowledge
sources through columns in a Z matrix, as demon-
strated in the sensitivity analyses presented in Figures 1
and 2. I found that defining a richer prior distribution
on b based on biology could indeed improve power to
detect variants. On closer inspection, I learned that
mutation type (synonymous vs. nonsynonymous) infor-
mation was more beneficial than gene-membership
information for most of the SNP bins, but the opposite
was true for the FLT1 gene. Thus I recommend provid-
ing as much external knowledge as possible in the
model (e.g., adding additional columns in Z). Because
my method is based on empirical Bayes estimates, it is
robust to poor specification of the prior distribution,
because this only leads to increased uncertainty

Table 4 Bayes factors for each causal variable under the
Q1 trait model

Causal variablea UNINF Z only A only FULL

ARNT, nonsynonymous 1.14 1.95 1.85 3.99

C4S1884 36.33 43.31 36.12 47.65

HIF1A, nonsynonymous 0.58 1.14 0.57 1.22

C13S522 527.13 600.4 764.92 773.35

C1S6533 109.38 149.45 119.39 162.42

C4S1878 57.23 92.15 69.16 107.15

C14S1734 1.47 2.42 1.47 2.58

C13S431 299.20 327.49 572.87 551.06

FLT1, nonsynonymous 17.25 27.80 81 103.17

C13S523 998.33 999.07 999.87 999.7
a Defined as either a bin of SNPs (shown with convention gene name and
mutation class) or a single SNP. Only variables with MAF ≥ 0.01 were included
for analyses.

Table 5 Bayes factors for each causal variable under the
Q2 trait model

Causal variablea UNINF Z only A only FULL

C6S5441 53.96 77.22 65.32 88.21

SIRT1, nonsynonymous 22.36 34.60 23.92 34.82

C2S354 11.17 15.29 11.04 16.46

C8S442 62.14 88.72 64.60 87.26

C6S5449 64.43 85.17 73.89 94.77

SREBF1, nonsynonymous 60.71 83.47 60.57 85.76

PDGFD, nonsynonymous 49.64 71.03 49.12 70.54

C6S5426 0.87 1.48 1.25 2.10

C6S5380 212.1 264.3 210.2 263.0

PLAT, nonsynonymous 9.28 14.54 8.89 14.44

VLDLR, nonsynonymous 17.51 26.85 17.15 26.93

BCHE, nonsynonymous 38.11 55.60 37.50 55.62

LPL, nonsynonymous 1.34 2.43 1.62 2.63
a Defined as either a bin of SNPs (shown with convention gene name and
mutation class) or a single SNP. Only variables with MAF ≥ 0.01 were included
for analyses.
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(modeled in the prior variances τ2 and s2), asymptoti-
cally reducing the prior distribution on b to a ridge
prior distribution.
Clearly, there is a need to develop methods to effec-

tively mine the data for rare variants that confer disease
risk. I am optimistic that my approach is more effective
than other methods in many cases, but it does have the
same limitations as those shared by collapsing-style
methods, particularly the strong assumption that effect
sizes will point in the same direction among SNPs inside
a bin. I am considering other variations of the hierarchi-
cal model that might more flexibly accommodate this
type of heterogeneity. One appealing idea is to include a
new stochastic layer into the algorithm that randomly
groups SNPs into bins (and consequently compresses
the A and Z matrices accordingly). My method cur-
rently permits one to perform a global test of associa-
tion (i.e., are any rare variants associated?) by testing
fixed bins. An important property of enabling flexibility
in bin assignment is that one can additionally perform
local tests of association (i.e., how often does this SNP
appear in any bin?).

Conclusions
I have presented a computationally efficient Bayesian
method that simultaneously provides additional power
to discover rare disease variants and enhances estima-
tion of true effect sizes. Users interested in the algo-
rithm can download C++ source code and binaries from
my website (http://www-hsc.usc.edu/~garykche/).
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