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Abstract

For the family data from Genetic Analysis Workshop 17, we obtained heritability estimates of quantitative traits Q1
and Q4 using the ASSOC program in the S.AA.GE. software package. ASSOC is a family-based method that estimates
heritability through the estimation of variance components. The covariate-adjusted mean heritability was 0.650 for
Q1 and 0.745 for Q4. For the unrelated individuals data, we estimated the heritability of Q1 as the proportion of
total variance that can be accounted for by all single-nucleotide polymorphisms under an additive model. We
examined a novel ordinary least-squares method, a naive restricted maximum-likelihood method, and a calibrated
restricted maximum-likelihood method. We applied the different methods to all 200 replicates for Q1. We observed
that the ordinary least-squares method yielded many estimates outside the interval [0, 1]. The restricted maximum-

the family data and the unrelated individuals data.

likelihood estimates were more stable than the ordinary least-squares estimates. The naive restricted maximum-
likelihood method yielded an average estimate of 0462 + 0.1, and the calibrated restricted maximum-likelihood
method yielded an average of 0.535 + 0.121. Our results demonstrate discrepancies in heritability estimates using

Background

The heritability of a trait is usually calculated using
family data. The identified genetic variants found through
genome-wide association studies account for only a small
portion of heritability for most complex traits [1] com-
pared with the heritability estimated from family data.
This discrepancy in the estimates, the missing heritabil-
ity, is of great interest because the sources of this differ-
ence are still unknown [1]. Recently, Yang et al. [2], using
a novel statistical method, suggested that the missing
heritability can be recovered using the genome-wide
associations of unrelated samples [2]. Because the
Genetic Analysis Workshop 17 (GAW17) data set
included family data and unrelated individuals data for
the same traits [3], we estimated the “heritability” of Q1
with the unrelated individuals data and estimated the
“heritability” of Q1 and Q4 with the family data.
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For the family data, the heritability is the narrow sense
heritability, estimated with the polygenetic effect model;
we conducted a George-Elston transformation [4] to esti-
mate the heritability. For the unrelated data, the heritabil-
ity is the proportion of the total variance in a phenotype
that can be described by all single-nucleotide polymorph-
isms (SNPs) under an additive model; we estimated it
using the ordinary least-squares (OLS) method suggested
by Yang et al. [2], a naive restricted maximum-likelihood
(REML) method, and a calibrated REML method. In all
our analyses, the heritability estimates were obtained after
adjustments for age, sex, and smoking status.

Methods

PEDINFO and ASSOC

For the family data, we chose to use quantitative traits
Q1 and Q4 of four randomly selected data set replicates
(Table 1). We used the Statistical Analysis for Genetic
Epidemiology (S.A.G.E.) software and the PEDINFO and
ASSOC programs. The PEDINFO program calculates
summary statistics about the family data set. The ASSOC
program performs a family-based association test using a

© 2011 Shetty et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:zhu1@darwin.epbi.cwru.edu
http://creativecommons.org/licenses/by/2.0

Shetty et al. BMC Proceedings 2011, 5(Suppl 9):534
http://www.biomedcentral.com/1753-6561/5/59/534

Page 2 of 5

Table 1 Heritability estimates for Q1 and Q4 using the family data

Replicate number Q1 Q4
Heritability Standard error Heritability Standard error
1 0.608 0.063 0.754 0.106
2 0.640 0.067 0.687 0.061
52 0.698 0.103 0.773 0.117
137 0.655 0.105 0.766 0.104

polygenic mixed effect model for a quantitative trait, and
it estimates the heritability through the estimation of the
proportion of a polygenic component to the total trait
variance. In our analysis, the heritability estimates were
obtained after adjustments for age, sex, and smoking sta-
tus. The George-Elston transformation was applied for
normality of residual distribution [4]. We did not include
any genotype variables in the model.

OLS and REML estimates

For the unrelated data, we used the OLS method sug-
gested by Yang et al. [2] and the two REML methods to
estimate the heritability of Q1 with all 200 data set
replicates. Here, the heritability refers to the proportion
of the variance in Q1 that can be accounted for by all
SNPs under an additive model [2]. We fitted the mixed
effects model:

y=Xy+Zu+e (1)

where y =(y,, ..., ¥,) consists of trait values of # unre-
lated individuals, X =[(1,x,), ..., (1, x,)’] , where x; = (x;1,
..., %;3) consists of the sex, age, and smoking status of the
ith individual, respectively, ¥ = (7,, ..., ¥3) consists of the
effect sizes of the covariates, Z =[z},...,z,,] summarizes
genotype data of 71 unknown causal variants such that z; =
(zi1, --» Zim), and zj = —2f]0j_1, (1- ij)cj_l, or
2(1- fj)cj_l if the genotype of the ith individual at the
jth causal variant is aa, aA, or AA, respectively, f; is the
frequency of allele A and G]-z =2(1-f;)f;- Here the
prime indicates the transpose of a vector or matrix.

Let the effects of m causal variants be:

u=(uy,...u,) ~N0O,2,) 2)
where & 3 is the variance and the residuals be:
e=(ey,...e,) ~N(,c2,) 3)
where 2 is the residual variance, I, is the identity
matrix of order n,

Then the variance-covariance matrix of y is:

var(y) =o;G+0,1, (4)

where G=(1/m)ZZ is the genetic relationship
matrix of causal SNPs and crg =mo, . Let X have the
rank r (=4 for the GAW17 unrelated individuals data),
and let P =[p;,....p,], where p,..,p, are all orthogo-
nal eigenvectors corresponding to eigenvalue 1 of idem-
potent matrix [, — X(XX)™'X’. Let =Py, 7 =p'z,
and g = P’ . It follows that:

J=Zu+é~N(0,V), (5)
where:

V =var(j) = o-ﬁé +oll, . (6)
and

~ 1 7’ ’

G=—27Z"=PGP (7)

m

Note that

~ =2 2 2 ,
E[(Vi‘)’j) :|=2Ge+6g(pi_pj)c(pi_pj)' ®)
Thus the slope and intercept of the regression of:
Ay =(i— )7]‘)2 )

on (p; - p)'G(p; - p)) are 0'§ and 207, respectively.
Because G is unknown, it is replaced with an estimate.
One naive estimate is A, the genetic relationship of gen-
ome-wide SNPs. Yang et al. [2] established an unbiased
estimate A* for G by calibrating the prediction error of
genetic relationship G of unobserved causal SNPs.
Replacing G with A* in the regression, we can estimate
the heritability as:

2 ax
hy(A%) = = Gg(AA)Z . (10)
o (A*) + 0 2(A%)

Because this estimate is based on OLS, it does not
need iteration. By replacing G with A and A* in the
model given by y=_Zu+eé, we can constructed the



Shetty et al. BMC Proceedings 2011, 5(Suppl 9):534
http://www.biomedcentral.com/1753-6561/5/59/534

naive and calibrated REML estimates by maximizing the
likelihood of (o ;,63 ).

Results

Heritability estimates using the family data

In the family data, 697 individuals (202 founders and 495
nonfounders) form eight pedigrees. The pedigrees all have
four generations of family members and a mean size of
87.13 individuals (range, 73—128). The pedigrees include
194 sibships with a mean size of 2.55 (range, 1-9). In the
four randomly selected replicates, the heritability estimates
for Q1 ranged from 0.608 to 0.698 with an average of
0.650; the heritability estimates for Q4 ranged from 0.687
to 0.773 with an average of 0.745 (Table 1).

Heritability estimates using the unrelated individuals data
The unrelated individuals data consist of genotypes of
24,487 SNPs and 200 replicates of 697 individuals for Q1.
The OLS estimates of the heritability were apparently
unstable (Figure 1), because many of them were outside
the interval [0, 1]. We computed the mean and standard
deviation of all 200 heritability estimates, including those
greater than 1 or less than 0. Over the 200 replicates, the
average heritability estimate for Q1 was ¢ = 0.555 with
standard deviation o = 0.480 after correcting for age, sex,
and smoking status.

We found that the REML estimates for Q1 were more
stable than estimates obtained using the OLS method
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(Figure 2). After accounting for age, sex, and smoking
status, the 200 naive REML estimates yielded an average
heritability estimate of 0.462 + 0.999, and the calibrated
REML estimates yielded an average heritability estimate
of 0.5351 + 0.1206 for Q1.

We were unable to obtain REML estimates for Q4
because the convergence rate of the REML was extre-
mely slow. We found that the convergence of the REML
failed because no SNP contributed any phenotypic varia-
tion in the simulated model [3].

Discussion and conclusions

In our analyses, we estimated heritability using both the
family data for Q1 and Q4 and the unrelated individuals
data for Q1. The heritability estimates for Q1 and Q4
using the family data appeared stable and reasonable. In
the simulation, Q1 has a heritability of 0.575, where
0.135 is due to the 39 causal SNPs and 0.440 is due to a
polygenic component, and Q4 has a heritability of 0.70
resulting from a polygenic effect. The mean heritability
estimates for Q1 and Q4 with the family data were 0.650
and 0.745, respectively.

The heritability estimates using the unrelated indivi-
duals data seem less reasonable. The OLS method did
not work well for the GAW17 unrelated individuals data
because the method was designed for genome-wide
common SNPs. In the GAW17 unrelated individuals
data, most of the SNPs are rare variants and a few of
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Figure 1 OLS estimates of the heritability of Q1. The estimates at many of the 200 replicates were greater than 1 or less than 0. Over the
200 estimates, the average heritability estimate for Q1 was u = 0.5549 with standard error o = 0.4803.
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smoking status.

Figure 2 REML estimates of heritability of Q1. (a) The relationship A of genome-wide SNPs was used to estimate the relationship G at
unobserved causal SNPs. Over the 200 replicates, the average heritability estimate was u = 04618 with standard error o = 0.0999 after
correcting for age, sex, and smoking status. (b) The calibrated relationship A* was used to estimate the relationship G at unobserved causal SNPs.
Over the 200 replicates, the average heritability estimate was u = 0.5351 with standard error o = 0.1206 after correcting for age, sex, and

them are causal variants. The genetic relationships esti-
mated using many rare variants may be unreliable, and
this results in the instability of the OLS estimates. The
REML approaches appear to be more stable than the
OLS method for Q1. We observed that the heritability
estimates using the unrelated individuals data were less
than those using the family data on average. For exam-
ple, the mean of the heritability estimates for Q1 for the
unrelated individuals data was 0.462 (by naive REML),
which was 0.188 less than the mean for the family data.
One possible reason is that the polygenic component
(0.440) in Q1 is not due to any SNPs in the GAW17
sequence data set. We should not be able to uncover
the polygenic effect using unrelated samples. However,
the mean naive REML estimate (0.462) is much larger
than the heritability because of the causal SNPs (0.135).
The reason is that we used all 24,487 SNPs to estimate
the relationships among individuals. There might be
other sources contributing to the heritability estimates.

Finally, we failed to estimate the heritability for Q4
using the unrelated samples because of the convergence
problem, which was the result of no genotyped exonic
SNPs in the data contributing to the phenotypic
variation.
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