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Abstract

Complex diseases are often the downstream event of a number of risk factors, including both environmental and
genetic variables. To better understand the mechanism of disease onset, it is of great interest to systematically
investigate the crosstalk among various risk factors. Bayesian networks provide an intuitive graphical interface that
captures not only the association but also the conditional independence and dependence structures among the
variables, resulting in sparser relationships between risk factors and the disease phenotype than traditional
correlation-based methods. In this paper, we apply a Bayesian network to dissect the complex regulatory
relationships among disease traits and various risk factors for the Genetic Analysis Workshop 17 simulated data. We
use the Bayesian network as a tool for the risk prediction of disease outcome.

Background
Recent genome-wide association studies have identified
many DNA variants (e.g., single-nucleotide polymorph-
isms [SNPs]) that affect complex human diseases. How-
ever, because currently identified genetic variants
collectively explain only a small proportion of disease phe-
notypic variance [1,2], it is important to consider not only
genetic factors but also various environmental variables,
such as sex, age, and smoking for disease etiology. There-
fore it is of great interest to delineate how the complex
interactions among the environmental variables, genetic
factors, and quantitative traits such as gene expressions
lead to disease outcome.
Inferring the dependency structures for multiple inter-

acting quantities is a challenging task, however. Without
sophisticated analysis tools, it is difficult to discern condi-
tional independence from dependence of two variables in
the data. Bayesian networks are a promising tool for this
purpose. First, they provide useful information that
describes processes composed of locally interacting

components. Second, statistical foundations for learning
Bayesian networks from observations and computational
algorithms to do so are well developed and have been
used successfully in many applications. Finally, although
Bayesian networks are mathematically defined strictly in
terms of probabilities and conditional independence state-
ments, a connection can be made between this characteri-
zation and the notion of direct causal influence [3-6].
By definition, a Bayesian network is a representation of a

joint probability distribution, which consists of two com-
ponents: E, which is a directed acyclic graph (DAG) whose
vertices correspond to the random variables X1, …, Xn;
and θ, which describes a conditional distribution for each
variable, given its parents in E. Together, these two com-
ponents specify a unique distribution on X1, …, Xn. The
graph E represents conditional independence assumptions
that allow the joint distribution to be factorized, econo-
mizing the number of parameters. The graph E encodes
the Markov assumption, which states that each variable Xi

is independent of its nondescendants, given its parents in
E [6].
To fully specify a joint distribution, we also need to

specify each of the conditional probabilities in product
form. In this paper we treat the variable X and its
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parents U1, …, UK as continuous variables, and a natural
choice for multivariate continuous distributions is Gaus-
sian distributions. These can be represented in a Baye-
sian network by using linear Gaussian conditional
densities. In this representation the conditional density
of X given its parents is given by:

P X u u N a a uk i i

i

( | ,..., ) ~ ( , )1 0
2+ ∑ s (1)

When including both quantitative traits and genetic
variants in the network analysis, Bayesian networks pro-
vide a natural platform for the mining of quantitative
trait loci (QTLs). As a result of the small effect size of
causal SNPs (mean OR < 1.4 for most common human
diseases) and the multiple testing burden, many SNPs
identified through genome-wide association studies are
false positives if multiple comparisons are not properly
taken into account. Because SNPs often exert their
effects on quantitative traits, such as gene expressions,
which in turn leads to the manifestation of downstream
disease phenotypes, the QTL signals are enriched in the
true disease causal variants, as suggested by emerging
evidence. Therefore QTLs identified for disease-asso-
ciated quantitative traits are more likely to be true risk
factors for the disease and are natural candidates for
disease risk prediction.
Functionally, not all SNPs are equally important in caus-

ing the disease. Because nonsynonymous SNPs produce a
different peptide sequence, they are more likely to be dis-
ease causal variants than synonymous SNPs are. There-
fore, by incorporating functional annotations of SNPs into
the association analysis, we can reduce signal dilution and
improve the power of detection of disease variants. In our
analysis, we integrate the functional annotation of SNPs
by adopting a weighted average approach to generate
gene-level scores. We then use data to determine the
appropriate weight or contribution of synonymous or non-
synonymous SNPs to the disease phenotype. We present
more details in the Methods section.
In this paper, we apply a Bayesian network to dissect

the complex regulatory relationships among disease
traits and various risk factors for the Genetic Analysis
Workshop 17 (GAW17) data and use a Bayesian net-
work as a tool to predict the risk of disease outcome.

Methods
Gene-level score derivation
The effective sample size for rare variants is quite small,
and association analyses performed at the single-SNP level
for these rare SNPs often lack sufficient power. To address
this issue, we systematically explored several grouping
methods published in the literature for rare variants,
including the collapsing method [7], the weighted-sum

method [8], the data-adaptive sum method [2], and the
kernel method [9]. We found that the well-established
weighted-sum method provided solid performance. There-
fore we used the weighted-sum method to perform the
groupwise analysis for the rare variants.
In the weighted-sum method, the gene-level genetic

variable is the sum of minor alleles of all the variants
within a particular gene, but each variant is weighted by
its minor allele frequency in order to put more emphasis
on rare variants.
To incorporate the functional annotation of SNPs into

the analysis, for each gene i, we obtain two gene level
scores Si and NSi using only synonymous SNPs and
nonsynonymous SNPs, respectively. We then generate a
combined gene score:

CS w S w NSi i i= − +( ) ( ),1 (2)

where w is the weight of nonsynonymous SNPs in
causing the disease phenotype. Note that w is the same
for all the genes in the data. Let Ps and Pns denote the
proportions of true positive genes using synonymous
and nonsynonymous gene scores, respectively. Then w
can be estimated by Ps/(Ps + Pns). For real data, the
functional annotation of SNPs can be obtained from
public databases such as SIFT. The R package locfdr is
used to calculate the proportion of true positive genes.

Selection of top genes for network construction
To lessen the computational burden, we first perform vari-
able selection to reduce the number of genes to be
included in the network analysis. To accomplish this task,
we construct simple regression models in which the
weighted gene score (described in the previous subsection)
and the smoking status are the explanatory variables. For
each of the 200 simulated GAW17 replicates, we obtain a
list of top genes passing the p-value cutoff threshold of
0.1, and those top genes that appear in greater than 100
replicates are retained. Recognizing that replicates may
not be available in real data, in a separate analysis we com-
bine 200 replicates into one pooled sample and generate
200 bootstrap samples from the combined sample. The
200 bootstrap samples are then treated as the 200 repli-
cates, and we find that the gene list obtained from the
bootstrap approach agrees closely with the genes selected
from the replicate-based approach (96% overlap). These
steps are repeated for each of the response variables of
interest (Q1, Q2, Q4, and disease phenotype), and the
union of the marginally associated genes for each response
variable is taken, resulting in the selection of 548 genes.

Network construction
The nodes fed into the Bayesian network contain the
following variables: environmental variables (age, sex,
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smoking status), disease phenotype, quantitative traits
(Q1, Q2, Q4), and the gene-level scores for the genes
selected in the previously described step.
The conditional likelihood of the variables given their

parents is represented in a Bayesian network by using
linear Gaussian conditional densities. To avoid biologi-
cally uninterpretable directional edges in the network,
we ban the following edges from appearing in the net-
work: (1) edges that point from traits (Q1, Q2, Q4, dis-
ease outcome) to genes, (2) edges that connect genes to
environmental variables, and (3) edges among genes.

Network optimization
We optimize the Bayesian network using a Monte Carlo
Markov chain. The steps are as follows: First, a random
network structure using all the variables is initialized.
Next, a node from the network is randomly selected.
Then, one of the following three operations is performed
on the selected node: (1) adding an edge between the
selected node and a potential parent node if the selected
node has no parents; (2) deleting the edge from an existing
parent; or (3) reversing the direction of the edge between
the selected node and one of its existing parents. Finally,
the post-operational likelihood for the selected node is cal-
culated. To do this, a random number from the uniform
distribution (0, 1) is chosen; if the random number is
smaller than the Metropolis-Hasting criterion, then the
new network configuration is accepted; otherwise, we
revert back to the original configuration. After the initiali-
zation step, the process is repeated many times until the
network likelihood stabilizes.

Network confidence score derivation
We estimate the confidence of the edges in the con-
structed Bayesian network by counting the number of
times they appear among the 200 replicates. More for-
mally, the confidence score for an edge in the network
is calculated as:

conf( ) ( ),f f Gi

i

=
=
∑1

200
1

200

(3)

where f(Gi) = 1 if and only if edge f can be extracted
from the network constructed from replicate data set Gi.
In our analysis, a cutoff of 5 (i.e., edges that appear in at
least five replicates) is applied to the confidence score to
select the final network. In real data, where replicates
may not be available, the confidence score can be
obtained from bootstrap samples generated from the ori-
ginal data.

Disease phenotype prediction
We use half of the data (randomly selected 100 repli-
cates) as the training cohort to obtain a Bayesian

network following the steps described earlier. Using the
features selected by the Bayesian network, we use a sup-
port vector machine to build the risk prediction model
in which the response variable is the binary disease out-
come and the environmental variables (smoking, sex,
age) and the QTLs (which are connected to the quanti-
tative traits in the Bayesian network) are the predictors.
The performance of the prediction model is then aver-
aged over the remaining 100 replicates.

Results
Network topology
In Figure 1 we present the topologies of the Bayesian
networks constructed from the true simulation model
released in the post-GAW17 solution key and from our
approach outlined in the Methods section.
To quantify the advantage of using a joint approach

(e.g., Bayesian network) in which multiple traits are con-
sidered simultaneously versus a marginal approach (e.g.,
least absolute shrinkage and selection operator
[LASSO]) in which only one trait is considered, we
tabulate the area under curve (AUC) value of both
methods in Table 1. The calculated AUC values mea-
sure how closely the detected genes agree with the true
causal genes in the simulation model.

Disease phenotype prediction using a Bayesian network
We assess the importance of the functional annotation
of SNPs in disease risk prediction by separately building
Bayesian networks using only nonsynonymous SNPs and
synonymous SNPs. The prediction performance in terms
of the AUC value is summarized in Table 2.

Discussion and conclusions
By examining the regulatory mechanism of genetic factors
on various traits, we find that no direct edges in the net-
work connect genes to the disease phenotype. This result
suggests that SNPs exert their effects on disease risk indir-
ectly by affecting other quantitative traits that are disease
related. This result agrees closely with the true simulation
model. In addition, note that in order to most optimally
draw inferences about the conditional independence rela-
tionships among the nodes in a Bayesian network, we
assume that no hidden nodes are missing from the net-
work. However, this assumption is violated in the GAW17
data because there is a latent component of the disease lia-
bility that is unobserved. Despite this imperfect setup, the
Bayesian network still performs rather well. By comparing
the true simulation network to our derived network
shown in Figure 1, we observe that most of the relation-
ships among environmental variables and disease or quan-
titative traits are correctly recovered (denoted by edges
with solid lines). Among the eleven gene-trait relationships
found in our network, eight of them are true positives and
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Figure 1 Bayesian network topologies (A) The network topology generated from the true simulation model described in the GAW17 answer
sheet. (B) The network topology inferred from the data using the Bayesian network approach. Dashed lines indicate false positive edges; solid
lines indicate edges that agree with the true simulation model.

Table 1 AUC values of jointly identified QTLs using the Bayesian network and marginally identified QTLs using LASSO

Method AUC value

Bayesian network 0.61

LASSO 0.57

Table 2 Bayesian-network-based risk prediction performance using SNPs of different functional annotations

Type of SNP used to construct
the Bayesian network

Mean AUC value
using only genes

Mean AUC value using genes and
environmental variables

Mean AUC value using gene and environment
variables and quantitative traits

Nonsynonymous only 0.61 ± 0.02 0.83 ± 0.02 0.96 ± 0.01

Synonymous only 0.52 ± 0.02 0.79 ± 0.02 0.95 ± 0.01

Figure 2 Bayesian network topologies generated from suboptimal weighting of the functional annotation of SNPs (A) Network
structure when synonymous and nonsynonymous SNPs have the same weight. (B) Network topology inferred using only synonymous SNPs.
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the remaining three genes are moderately but significantly
correlated with true causal genes. Furthermore, based on
the results summarized in Table 1, it is quite evident that
a joint approach in which multiple traits are considered
simultaneously (e.g., Bayesian network) has substantial
advantages over marginal methods such as the LASSO, in
which traits are considered separately.
Our results suggest that the functional annotation of

SNPs should not be overlooked in both association signal
detection and disease risk prediction. In our analysis, we
estimated the relative contribution of nonsynonymous
SNPs versus their synonymous counterparts and found
that the disease phenotype is predominantly driven by
nonsynonymous SNPs, which closely agrees with the
released simulation model. Therefore it is not surprising
that the Bayesian network constructed with only synon-
ymous SNPs fails to recover any of the true gene-trait rela-
tionships (shown in Figure 2) and yields a much lower
AUC value than that from the Bayesian network built with
only nonsynonymous SNPs (Table 2).
Finally, we find that genetic variants collectively explain

only a small proportion of the disease phenotype. The risk
prediction model constructed with only genes as predic-
tors gives an AUC value of only 0.61. However, after the
environmental variables are added to the model, the AUC
value is dramatically improved to 0.83. This result suggests
that although the genetic variants may play an important
role in disease etiology, because of their rare nature and
because only a small proportion of the population carries
these disease variants, their utility as disease risk predictors
is limited.
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