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Abstract

Aitkin recently proposed an integrated Bayesian/likelihood approach that he claims is general and simple. We have
applied this method, which does not rely on informative prior probabilities or large-sample results, to investigate
the evidence of association between disease and the 16 variants in the KDR gene provided by Genetic Analysis
Workshop 17. Based on the likelihood of logistic regression models and considering noninformative uniform prior
probabilities on the coefficients of the explanatory variables, we used a random walk Metropolis algorithm to
simulate the distributions of deviance and deviance difference. The distribution of probability values and the
distribution of the proportions of positive deviance differences showed different locations, but the direction of the
shift depended on the genetic factor. For the variant with the highest minor allele frequency and for any rare
variant, standard logistic regression showed a higher power than the novel approach. For the two variants with the
strongest effects on Q1 under a type | error rate of 1%, the integrated approach showed a higher power than
standard logistic regression. The advantages and limitations of the integrated Bayesian/likelihood approach should
be investigated using additional regions and considering alternative regression models and collapsing methods.

Background
Association studies are substantially contributing to our
knowledge of the genetic basis of human disease, but for
most complex diseases the proportion of explained herit-
ability remains at best modest [1]. Large variants, epistatic
and parent-of-origin effects, additional layers of genetic
variation (microRNA, DNA methylation, histone modifica-
tion), and rare variants probably account for the missing
heritability [2,3]. In this paper we explore the properties of
a novel method of inference to quantify the evidence of
association between a response variable (an indicator of
disease status, the disease being common) and several
independent variables, including the carriage of a rare
variant.

Likelihood plays a central role in Bayesian, frequentist,
and likelihood theory as a measure of strength of evidence.
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Based on the posterior distribution of the likelihood first
described by Dempster, Aitkin has recently proposed an
integrated Bayesian/likelihood approach that he claims is
general and simple [4,5]. Bayes factors are usually applied
to compare different statistical models and parameter
values. Under the novel approach, likelihood ratios
between models and parameter values are interpreted by
using the full posterior distribution of the likelihood. A
particular advantage of the method is that it does not rely
on informative prior probabilities or large-sample results,
and therefore it may be particularly suitable to identify
rare susceptibility variants. We have applied this novel
approach to investigate the evidence of association
between disease and the 16 variants in the KDR gene pro-
vided by Genetic Analysis Workshop 17 (GAW17).

Methods

Analyses were performed with knowledge of the underly-
ing simulating model. Details on data simulation are pro-
vided by Almasy et al. [6]. In short, some KDR variants
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influence a quantitative risk factor Q1 with larger effects i i
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among smokers. Q1 correlates with a quantitative risk
factor Q2 and with a normally distributed latent liability
trait that increases with age and is higher in smokers.
The dependent variable investigated in the present con-
tribution (y = disease affection status) is a function of Q1,
Q2, the liability trait, and additional risk factors.

We consider a baseline logistic regression model (model
1), where y depends on age (continuous variable), smoking
status (dichotomous), and ethnicity (five categories).
Model 2 includes age, smoking status, ethnicity, and a sin-
gle genetic factor. Table 1 shows the list of investigated
genetic factors. We consider individual variants 1 to 16,
modeled by minor allele counts (additive model) and a
collapsed genotype, and the presence of any rare variant,
“rare” being defined as having a minor allele frequency
less than 1%.

Under the two models, y; ~ Bernoulli (r7;) with:
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where x; contains the elements of the corresponding
design matrices and B contains the model parameters (age,
smoking status, ethnicity, and, for model 2, the single
genetic factor). We consider noninformative, improper
uniform prior probabilities for B. As a consequence, the
joint posterior distributions of B are proportional to the
likelihoods from the two logistic regression models, that is,

with fixed N = 697 persons in the present exercise.
We use a random walk Metropolis algorithm to make
10,000 draws from the posterior distribution under
model 1 and 10,000 independent draws under model 2.
The deviance is defined as minus twice the logarithm of
the likelihood. Random draws from posterior distribu-
tions are used to simulate the distributions of deviance
and deviance difference.

Power calculations rely on the probability values and
on the proportions of positive deviance differences for
the 200 replicates in the GAW17 data. To compare stan-
dard logistic regression with the novel approach, we use
Wilcoxon rank sum tests on the null location shift and
two-sample tests for the equality of proportions. Three
different thresholds, 0.1, 0.05, and 0.01, are considered
for probability values and proportions of positive
deviance differences. All calculations and graphics are
implemented with the free software environment R.

Results

Table 1 shows some characteristics of the investigated
variants. Effect sizes are shown for nonsmokers; they
were 50% higher in smokers. Out of 16 variants, 10 var-
iants influenced Q1, with variants 7 and 13 having the
strongest effects (1.08 and 0.94, respectively). Minor
allele frequencies (MAFs) varied from 0.1% to 17%. Out

Table 1 Characteristics of the investigated variants in the KDR gene and results for the first replicate

Marker Order Position (MB) Variant Effect on Q1 MAF (%) P-value Deviance difference
Median  95% credible interval Proportion > 0

C451859 1 55650982 T - 0.14 0.18 -7.23 -17.66 2.75 0.06
451861 2 55655860 T 0.56 0.22 0.30 -0.72 -11.53 10.04 044
(451868 3 55657190 G - 0.07 0.05 -8.12 -18.62 -0.19 0.02
451872 4 55665610 T - 0.07 042 —1.46 -11.99 7.79 037
451873 5 55665650 A 0.58 0.07 0.08 —7.65 -18.23 0.28 0.03
C451874 6 55665716 C 047 0.07 0.57 -1.03 -11.85 7.84 041
451877 7 55667703 G 1.08 0.07 0.71 -0.99 -11.83 7.79 042
451878 8 55667731 A 0.14 16.50 0.30 -0.09 -11.36 10.67 049
451879 9 55668736 A 0.62 0.07 0.70 -0.99 -11.70 794 041
451881 10 55671466 G - 0.14 0.18 —7.26 —-17.55 278 0.06
451884 11 55674315 T 030 2.08 0.11 -230 —-13.10 891 032
(451887 12 55675804 T 0.30 0.07 0.25 -2.09 -12.84 6.68 0.30
C451889 13 55676245 G 0.94 0.07 071 -0.86 -11.70 7.67 042
C451890 14 55676288 T 042 0.22 0.24 -1.39 -12.26 1032 0.38
451892 15 55679646 A - 0.07 0.07 —7.71 -17.89 031 0.03
451893 16 55679682 G - 0.07 0.02 -9.77 —-20.28 -1.95 0.01
Any rare variant 0.06 -3.14 -14.08 8.11 027

MAF, minor allele frequency. P-value is the probability value from standard logistic regression. “Any rare variant”: 17 out of 697 individuals carried at least one
minor variant other than variant 8 and variant 11.
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of 697 individuals, 17 (2.4%) carried at least one rare
variant.

Detailed results for the first replicate from standard
logistic regression and from the novel approach are also
presented in Table 1. The probability value for a genetic
effect based on a standard logistic regression model that
also included age, smoking status, and ethnicity was 0.02
for variant 16 and 0.06 for “any rare variant.” The five
probability values less than 0.10 were found for variants
without a direct effect on Q1, with the exception of var-
iant 5. The two variants with the strongest effects on Q1
(variants 7 and 13) showed the highest probability values
(0.71 for both).

Figure 1A shows the posterior cumulative distributions
of deviance for four logistic regression models. The lower
the deviance (curves to the left), the higher the likelihood
and the better the model. For each model, the lowest
value of the deviance corresponds to the frequentist max-
imum likelihood. For example, the maximum likelihood
was similar under model 1 (black curve) and when var-
iant 8 was included (blue curve). If we consider the com-
plete deviance distribution, we observe that the model
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that included any rare variant (gray curve) was better
than model 1 and that a model with variant 16 (red
curve) clearly dominated over the other three models.

Figure 1B shows deviance differences between three
models that include a genetic factor and the reference
model 1. The median deviance difference for the model
with variant 16 (red curve) was —9.77 and the central
95% credible interval of the deviance difference was
(-20.28, —1.95). The deviance difference was positive in
125 out of 10,000 draws. This proportion (125/10,000 =~
0.01) measures how strongly the data support a genetic
effect of variant 16. Medians, 95% credible intervals, and
proportions of positive deviance differences using model
1 as a reference are shown in Table 1 for the first repli-
cate. In agreement with probability values from standard
logistic regression, the strongest evidence of association
based on the proportion of positive deviance differences
was found for variants 16, 3, 5, and 15. In contrast to a
probability value of 0.06, the proportion of positive
deviance differences for “any rare variant” was 0.27. The
proportion of positive deviance differences for variants 7
and 13, with the largest effect on Q1, was 0.42.
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Figure 1 Posterior cumulative distributions of (A) deviance and (B) deviance difference under four logistic regression models.A
baseline model that includes age, smoking status, and ethnicity was used as a reference to calculate deviance differences.
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Box plots of probability values and proportions of
positive deviance differences in replicates 1 to 200 are
shown in Figure 2. In general, probability values and
proportions of positive deviance differences showed
skewed distributions. The smallest median probability
value and the smallest median proportion of positive
deviance differences were observed for the two variants
with the strongest effects on Q1 (variants 7 and 13).

Table 2 summarizes the probability values and propor-
tions of positive deviance differences for the 200 repli-
cates in the GAW17 data. Effects on Q1 and MAFs are
also shown for convenience. For example, for variant 7
with an effect of 1.08 and MAF = 0.07%, the median
probability value was 0.03 and 95% of the probability
values belonged to the interval (0.01, 0.80). For this var-
iant, the power of standard logistic regression was 70.5%
(type I error rate, 10%), 65% (error rate, 5%) and 11.5%
(error rate, 1%). The statistical power was identical for
variant 13. Under standard logistic regression and a type
I error rate of 10%, the power was 49% for “any rare
variant” and it was 34.5% for variant 8, which had the
highest MAF.

Based on the integrated Bayesian/likelihood approach,
the smallest median proportion of positive deviance dif-
ferences (0.01) and the highest power (69% for a type I
error rate of 10%) were also found for variants 7 and 13.
Wilcoxon rank sum tests indicated that the distribution
of probability values and the distribution of the propor-
tions of positive deviance differences showed different
locations, but the direction of the shift was variable (see
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Figure 2). For variant 8 and for “any rare variant,” stan-
dard logistic regression showed a higher power than the
novel approach (probability values from Wilcoxon rank
and equality of proportion tests < 0.0001). For variants 7
and 13 and a type I error rate of 1%, the integrated
approach showed a higher power than standard logistic
regression.

Discussion and conclusions

Genome-wide association studies usually rely on the
common disease/common variant hypothesis: Poly-
morphisms are genotyped and their association with dis-
ease is investigated. The identified, most often indirect
associations are assumed to reflect a shared inheritance
of the genotyped markers and linked causal variants [7].
The first aim of these studies is to detect association
regions, mostly by relying on significance testing and
summarizing results by probability values. When more
precise hypotheses and more refined studies have been
set up (e.g., focusing on a specific chromosomal region
and incorporating genotypes from public data reposi-
tories), the subsequent goal is to quantify and model
associations and to identify causal variants underlying the
association signal.

The investigated genotypes are usually ranked accord-
ing to plausibility of causal association. Ranks are most
often based on probability values, although probability
values have important disadvantages compared to Bayes
factors [8]. Probability values are often misinterpreted as
the probability of no association given the observed data,
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Figure 2 Box plots of probability values from standard logistic regression and proportions of positive deviance differences for the 200 replicates




Table 2 Probability values, proportions of positive deviance differences, and power comparisons based on the 200 replicates

Variant Effect on MAF Probability value Positive deviance differences (%) Pw Py Po.os Po .01
Q1 (%)
Median 2.5th 97.5th  <0.1 <0.05 <0.01 Median 2.5th 97.5th  <0.1 <0.05 <0.01
(%) (%) (%) (%) (%) (%)
1 0.26 004 094 0.100 0.035 0.000 0.08 0.05 0.59 0.540 0.010 0.000 -
2 0.56 022 035 000 081 0.205 0.120 0.050 043 004 057 0.045 0.045 0.010 00002 <0.0001 0.01095 0.0402
3 - 0.07 0.25 005 057 0.280 0.015 0.000 034 002 048 0480 0315 0000  <0.0001 <0.0001 <0.0001 -
4 - 0.07 0.26 008 049 0.100 0.000 0.000 0.09 003 047 0510 0.280 0000  <0.0001 <0.0001 <0.0001 -
5 0.58 0.07 022 0.07 0.50 0.180 0.000 0.000 0.08 0.03 045 0.615 0.350 0.000 <0.0001 <0.0001 <0.0001 -
6 047 0.07 0.56 004 066 0.200 0.155 0.000 040 0.01 049 0330 0.255 0.000 <0.0001 0.00462 0.01861 -
7 1.08 0.07 0.03 0.01 0.80 0.705 0.650 0.115 0.01 0.00 0.50 0.690 0.690 0485 <0.0001 0.82766 045667 <0.0001
8 0.14 16.50 018 0.00 0.95 0.345 0.255 0.095 040 0.06 0.58 0.065 0.020 0.000 <0.0001 <0.0001 <0.0001T <0.0001
9 0.62 0.07 0.68 003 079 0.060 0.040 0.005 044 002 051 0.055 0.055 0020  <0.0001 1 0.63826 0.36808
10 - 0.14 0.26 004 094 0.100 0.035 0.000 0.08 0.05 0.59 0.540 0.010 0.000 <0.0001 <0.0001 0.17747 -
Il 0.30 2.08 0.30 0.00 0.94 0.285 0.195 0.040 045 0.07 0.58 0.040 0.020 0.005 0.00106 <0.0001 <0.0001 0.04308
12 0.30 0.07 0.26 0.08 049 0.225 0.000 0.000 0.10 0.03 047 0515 0.360 0.000 <0.0001 <0.0001 <0.0001 -
13 094 0.07 0.03 0.01 0.80 0.705 0.650 0.115 0.01 0.00 0.50 0.690 0.690 0475 <0.0001 0.82766 045667 <0.0001
14 042 0.22 0.26 001 099 0.140 0.060 0.045 043 001 059 0.050 0.035 0025 036355 0.00374 034708 041439
15 - 0.07 0.69 003 075 0.095 0.040 0.000 044 001 051 0.095 0.095 0020  <0.0001 1 0.04627 0.13167
16 - 0.07 0.67 0.01 0.78 0325 0235 0.000 042 0.00 0.51 0320 0.320 0.155 <0.0001 1 0.07399 <0.0001
Any rare 0.11 0.00 091 0.490 0.395 0.205 033 0.01 057 0.165 0.095 0.025 <0.0001 <0.0001 <0.0001 <0.0001
variant

MAF is the minor allele frequency. 2.5th and 97.5th are percentiles. Py, is the probability value from a Wilcoxon rank sum test on the null location shift. Py, is the probability value from a two-sample test for equality
of proportions (percentage of probability values smaller than 0.1 and percentage of proportions of deviance differences under 0.1); the same applies to Poos and Pgo1.
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but they actually measure the probability of the data
given no association. The ranking of markers based on
probability values is difficult to interpret, because prob-
ability values depend on factors that influence power,
such as allele frequency and sample size. In addition,
Bayes factors may discriminate between causal variants
and markers better than probability values. However, a
limitation of Bayes factors is the need to define proper
prior probabilities in order to compute an integrated like-
lihood. Aitkin recently proposed a Bayesian/likelihood
approach that allows incorporation of a priori external
information if desired, but it also allows use of improper
noninformative prior probabilities. The relative simplicity
and the independence on large-sample results are impor-
tant advantages of the method. Limitations include com-
putation time and the necessity to carefully check for
convergence in Markov chain Monte Carlo methods. The
novel approach could also be applied to investigate the
role of additional layers of genetic variation (gene methy-
lation and expression), once its potential over standard
methods has been investigated.

The marked differences between the data in Table 1,
which shows results for the first replicate, and Table 2,
which summarizes results for all 200 replications, reflect
the importance of external validation of initial association
signals. For example, in the first replicate, the highest
probability value and the highest proportion of positive
deviance differences were observed for the two variants
with the strongest effects on Q1 (variants 7 and 13).
Table 2 shows that the average statistical power was
highest for these two variants.

Our analyses have some limitations. We have consid-
ered one single gene and used a simplistic method to
collapse rare variants; details on more sophisticated col-
lapsing methods can be found in the overview by Dering
et al. [9]. The baseline model was also fixed, and gene-
smoking interactions were not investigated. The distri-
bution of deviance differences was smooth, but the
deviance distribution was discrete. Our reference
method was standard logistic regression; a comparison
with Bayesian methods relying on Bayes factors would
also be of interest. Our goal with this analytical exercise
was to gain experience with a novel technique that may
offer some advantage to identify rare susceptibility
variants.
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