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Abstract

Recent breakthroughs in next-generation sequencing technologies allow cost-effective methods for measuring a
growing list of cellular properties, including DNA sequence and structural variation. Next-generation sequencing
has the potential to revolutionize complex trait genetics by directly measuring common and rare genetic variants
within a genome-wide context. Because for a given gene both rare and common causal variants can coexist and

have independent effects on a trait, strategies that model the effects of both common and rare variants could
enhance the power of identifying disease-associated genes. To date, little work has been done on integrating
signals from common and rare variants into powerful statistics for finding disease genes in genome-wide
association studies. In this analysis of the Genetic Analysis Workshop 17 data, we evaluate various strategies for
association of rare, common, or a combination of both rare and common variants on quantitative phenotypes in
unrelated individuals. We show that the analysis of common variants only using classical approaches can achieve
higher power to detect causal genes than recently proposed rare variant methods and that strategies that
combine association signals derived independently in rare and common variants can slightly increase the power
compared to strategies that focus on the effect of either the rare variants or the common variants.

Background

Genome-wide association analysis of common DNA var-
iants (usually single-nucleotide polymorphisms [SNPs])
has been successful in finding common variants asso-
ciated with complex diseases and phenotypes. However,
most of these associated variants have small effect size,
and thus the proportion of heritability explained is
usually modest. An increasingly popular suggestion to
address this issue is to shift attention from searching for
common variants of small effect to searching for rare
variants with larger effects [1]. However, complex dis-
eases can be influenced by both common and rare var-
iants within the same gene [2]. Although many methods
for analyzing common variants have been proposed and
have proved successful in identifying loci associated
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with phenotype, recent work has addressed the chal-
lenges that arise when rare variants are analyzed [3-5].
Most rare variant methods test for a relationship
between the disease state or a quantitative trait and the
number of mutations in a gene. The statistical test is
usually performed by collapsing genotypes across var-
iants that have low frequency, with or without weight-
ing, followed by a univariate test on the aggregate
variable. A challenge to overcome in the analysis of rare
and common variants jointly is that methods for com-
mon variants are suboptimal for the analysis of rare var-
iants, and, conversely, methods proposed for the analysis
of rare variants focus essentially on accumulation of rare
variants within a given functional unit and are not
designed to capture the effect of common variants (i.e.,
with minor allele frequency [MAF] > 5%). Nevertheless
a few methods have been proposed to identify regions
that hold both common and rare variants. A haplotype-
based approach is one solution when only common
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variants are available [6], and some general frameworks
have been proposed to jointly analyze rare and common
variants, as in the combined multivariate and collapsing
method [3]. In this last approach, variants are divided
and collapsed into subgroups on the basis of allele fre-
quencies, and all subgroups are analyzed jointly using a
multivariate test.

In this study, we compare several strategies for analyz-
ing sequence data in the context of an exome-wide asso-
ciation study in which a large number of genes, each of
which contains either rare and/or common causal and
noncausal variants, have been sequenced in unrelated
individuals. We split all genes into subgroups according
to the MAF of the SNPs and analyze each subgroup
independently using different methods. First, we com-
pare the power and type I error rate of three recently
proposed collapsing methods [4,5] when searching for
association between a gene and a quantitative pheno-
type. Second, we explore the advantages and disadvan-
tages of independently analyzing common SNPs (e.g.,
SNPS that have MAF > 5%) using two different statisti-
cal approaches. Third, we combine the results of the
rare and common variant tests using Fisher’s method.
We compare the power and type I error rate of our
combined test with each of the rare and common var-
iant approaches alone. We show, first, that the power of
the rare variant approaches to detect the genes harbor-
ing multiple causal variants (referred to as causal genes
throughout this work) is low in these simulated data
and that higher power can be achieve by analyzing com-
mon variants only; second, we show that combining sig-
nals from rare and common variants can slightly
improve the power.

Methods

Genetic Analysis Workshop 17 data

In this study we considered the first 100 replicates of
quantitative phenotype Q1 in 697 unrelated individuals
in the Genetic Analysis Workshop 17 (GAW17) data set
[7]. Each individual was genotyped for 24,487 SNPs
across 3,205 genes. We separated these 3,205 genes into
three groups: (1) genes that have only rare variants (all
SNPs with a MAF < 5%), (2) genes that have both rare
and common variants (at least one SNP with a MAF >
5% and one SNP with a MAF < 5%), and (3) genes that
have only common variants (SNPs with a MAF > 5%
only). The quantitative phenotype Q1 was influenced by
39 SNPs in 9 genes. There were 1 to 11 functional var-
iants per gene, with a MAF of 0.07% to 16.5%. Four of
these causal genes belong to group 1 (FLT4, HIFIA,
VEGFA, and VEGFC) and hence had only rare causal
variants. The other five genes (ARNT, ELAVL4, FLTI,
HIF1A, and KDR) were all part of group 2. With the
exception of HIF3A, all genes had at least one causal
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SNP with a MAF > 1%. Two of them, KDR and FLTI,
also had one causal variant with a MAF > 5%.

Strategy

We analyzed only the genes of groups 1 and 2 which
contain rare variants. Group 1 was analyzed using rare
variant methods only. Group 2 was analyzed using the
same rare variant methods, then with common variant
approaches, and finally with the new combined tests
that we defined.

Analysis of rare variants

We use three rare variant methods that collapse variants
from the same gene based on the MAF to build a score.
These tests have been recently extended to the analysis
of quantitative phenotypes by Price et al. [5]. The three
test are (1) the fixed threshold (FT) approach [3], in
which all markers that have a MAF below the threshold
T are collapsed without weighting the markers; (2) the
weighted (WE) approach proposed by Madsen and
Browning [4], in which all available SNPs are used and
weighted inversely to their MAF in control subjects; and
(3) the variable threshold (VT) approach [5], which is
similar to the previous approaches but searches for the
optimal threshold T, that maximizes the score and
optionally allows for weighting. The significance level of
these three scores is estimated empirically using permu-
tation of the phenotype value. These tests were con-
ducted using the VT Test software (http://genetics.bwh.
harvard.edu/vt/dokuwiki/start). The principles of these
tests are described in more detail in the GAW17 back-
ground papers on collapsing methods [8].

Analysis of common variants

We compared two approaches to summarize single-SNP
associations for each gene G. First, we conducted a clas-
sic genome-wide analysis of Q1 for all available SNPs
that have a MAF over a given threshold 7 using a linear
regression under an additive model; we used the mini-
mum p-value P, g of each gene as the summary statis-
tic. Second, we allowed for simultaneous effects of
multiple variants by using the LASSO (least absolute
shrinkage and selection operator) algorithm [9] to iden-
tify a family of “most predictive” variants. The LASSO,
which uses a penalized least-squares criterion, is a com-
putationally fast approach for exploring the options
between the additive model that allows separate effects
for all variants in the gene and the model that ignores
all variants. A sequence of penalty values is defined, and
as the penalty decreases, more variants are allowed to
enter the model for mean response. A popular tool for
choosing the LASSO-based model for a given data set
uses an analog [10] of Mallows’s C,. The LASSO
method is described in more detail in the GAW17
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background papers on machine learning methods [11].
In our application, we applied the LASSO method
separately for each gene to identify a predictive subset
of all SNPs in the gene having MAF >T. The p-value
Piasso.c of the “best (minimum C,) model” identified by
the LASSO method was used as the summary statistic
for this approach.

After correcting P and Plug0.g for the number of
markers in the gene, we can consider these two p-values
as an association test for the gene. We refer to these
two approaches later as CVppmin and CVigg,. Note that
our correction of Pj 4. involves multiplication by the
total number of SNPs in gene G. This is likely conserva-
tive because the number of degrees of freedom of a
LASSO fit is equal to the number of nonzero coeffi-
cients of the fit [10], which is typically much less than
the number of SNPs. Further work on calibration of
genome-wide inferences with adaptive testing for SNPs
is warranted.

Combined test

Although the VT and WE approaches focus on the
aggregation of rare variants, they use all available SNPs
from gene G to estimate the association with the pheno-
type and hence are already using information from com-
mon SNPs. Thus for the combined test we aggregate the
association signal from rare variants derived with the FT
approach and the association signal from common var-
iants derived using either CVpmin or CViue in the set of
SNPs excluded by the FT approach. We used Fisher’s
method to combine p-values from rare and common
variant tests. Fisher’s method is a classical tool for meta-
analysis of multiple tests. The principle is to form a sin-
gle test U from a set of np-values p; obtained from »
independent. U is defined as:

U= —221n(pi). (1)
i=1

Under the null hypothesis of no association of any of
the n tests, U has a chi-square distribution with 2x
degrees of freedom.

Comparison of approaches

We first compared type I error rate of the three rare
variant approaches and the power to detect the four
causal genes of group 1 and the five causal genes of
group 2. We used two different MAF thresholds (1%
and 5%) for the FT test. We also compared in group 2
the power and type I error rate of the common variant
association tests CVpmin and CVi,g, for the two thresh-
olds. We then applied the combined test to group 2.
Because we defined two statistics to summarize results
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from the common variant approaches and used two
thresholds for the FT test, we applied four combined
approaches. For all the tests we conducted, the final
p-values were corrected for multiple testing using a
Bonferroni correction.

Correction for inflated type | error rate

The first analyses we conducted were subject to a
substantial inflation of type I error. We used genomic
control [12] to correct all p-values. The technique of
genomic control consists in measuring the inflation fac-
tor A of the distribution of a test statistic, which reflects
the difference between the observed distribution and an
expected distribution, and dividing all observed values of
the tests by this factor. In large-scale analysis, in which
most tests are expected to be distributed under the null
hypothesis of no association, the inflation factor is
usually derived as the ratio between the observed med-
ian of the observed test statistic and the expected med-
ian under the null hypothesis. The mean of the statistic
or of its null distribution can be used instead of the
median [13]. In this data set we used the chi-square sta-
tistic with 1 degree of freedom corresponding to the
observed p-value as the observed statistic. The inflation
factor 1 was derived as the ratio of the mean of the
observed chi-square statistic over the mean of the
expected chi-square statistic under the null hypothesis
of no association.

Results

Description of the group of genes

The first group of genes included 1,732 genes having only
SNPs with MAF < 5%. The mean number of SNPs per
gene was 3.155 (SD = 4.116), and the mean frequency of
SNPs in this group was 0.006 (SD = 0.009). The second
group included 1,142 genes having both rare and com-
mon variants (at least one SNP with MAF < 5% and at
least one SNP with MAF > 5%). The mean number of
SNPs per gene was 16.336 (SD = 20.173), and their fre-
quency on average was 0.035 (SD = 0.088). Group 3
included 331 genes having only variants with MAF > 5%.
There was a mean of 1.106 (SD = 0.387) SNPs per gene,
and the frequency was 0.186 (SD = 0.124) on average.

Analysis of all genes without genomic control

For the overall set of noncausal genes (i.e., all genes that
contain no causal SNPs), we first measured the type I
error rate of each of the rare variant tests and of the
two common variant tests using a threshold T of 5%.
All these tests were highly inflated with a mean inflation
factor A across the 100 replicates of 2.26 (SD = 0.29),
2.75 (SD = 0.36), 2.73 (SD = 0.36), 2.23 (SD = 0.26), and
2.29 (SD = 0.48) for the FT5y, WE, VT, CVpmin,s% and
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CVlasso 59 tests, respectively (those tests that depend on
a threshold are indicated with the subscript T percen-
tage) (Figure 1A). We used genomic control to correct
the p-values of all these tests. After correction, all tests
showed a correct type I error rate (Figure 1B). Using
this adjusted association test, we compared these meth-
ods on genes of group 1 and group 2.

Analysis of genes from group 1

Table 1 shows the power and type I error rate of the VT
test, the WE test, and the FT;4 and FT;q tests for the
genes from group 1. After Bonferroni correction to cor-
rect for multiple testing, none of these tests were able to
capture any of the four causal genes from group 1. The
top ranks and p-values of the causal genes among the
1,732 tested genes of this group for replicate 1 were
VEGEFC for the FT 4 test (p = 0.001, rank = 6), FT5q
test (p = 0.001, rank = 25), and VT test (p = 0.001, rank
= 21) and VEGFA for the WE test (p = 0.0004, rank =
15). Thus an inspection of the top genes will capture
only a small fraction of causal genes yet will result in
many false positives.

Analysis of genes from group 2

The second group of genes was analyzed first using the
rare variant methods only, then using the common var-
iant tests only, and finally using the combined test
(Comb (pmin-rr) for the combined test of CVppin and FT
and Comb a0+ fOr the combined test of CV),g, and
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FT). We considered the two thresholds of 1% and 5%.
Power and type I error rate of all these tests are pre-
sented in Table 1. As in the analysis of group 1, none of
the rare variant tests alone was able to capture a single
causal gene over the 100 replicates analyzed. Surpris-
ingly we observed a higher power for the two common
variant tests. CVpmin had a power equal to 0.20 whatever
threshold was used, and CV\,s, had a power of 0.094
and 0.158 for T = 1% and T = 5%, respectively. Using
the combined tests always slightly increased the power
to detect the five causal genes of this group compared
to the power of the tests considered alone. The highest
power (0.23) was observed for the combined approach
that used CVpmin,1% and FTyy. It is perhaps surprising
that CV,min exhibited greater power than CVi,g,, but
note that the LASSO-based procedure was not forced to
include in its minimum C, the single SNP with mini-
mum p-value according to the genetic model used.
Alternative approaches to stepwise SNP selection in the
common variants context are worthy of investigation.

Discussion

Genome-wide analysis of sequence data will be a major
challenge in complex trait associations over the next
several years [14]. Before such studies can be systema-
tized, many technical issues will need to be addressed.
In this study we show that the power of recently pro-
posed rare variant methods to detect causal genes may
be very low when considered alone but that the
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Table 1 Comparison of power and type | error rate of single tests and combined tests

Method Group 1

Group 2

Power to detect the four

Type | error rate

Power to detect the Type | error rate

causal genes for a = 5% five causal genes for o = 5%
Rare variant tests
FT 0 0053 0 0.051
FTso 0 0048 0 0.054
WE 0 0.047 0 0.051
VT 0 0.046 0 0.046
Common variant tests
NVomin1% - - 0.200 0.052
CVormin,s9 - - 0.200 0.049
Niasso,19 - - 0.094 0.056
Miasso,5% - - 0.158 0.059
Combined tests
CombBipmins#,1% - - 0.230 0.057
CombBipminsms% - - 0.202 0.058
Combyasso+Fn,1% - - 0.182 0.060
Combyasso+Fn,5% - - 0.196 0054

Type | error rate and power were computed over 100 replicates after genomic control adjustment. Group 1 includes genes that have only rare variants; these
genes have been analyzed using rare variant approaches only. Group 2 includes genes that have both rare and common variants. FT, fixed threshold test; WE,
weighted test; VT, variable threshold test; CVmin, common variants test using p-min; CV),s5,, cOmmon variants test using LASSO; Comb, combined test. Tests that

depend on a threshold are indicated with the subscript T (1% or 5%).

association signal from these rare variants can be com-
bined with the association signal of common variants,
estimated with classical approaches, resulting in a slight
increase in detection ability in our data. Moreover, we
show that it will be challenging to identify small genes
that have a low number of causal variants in exome-
wide association studies. In these simulated data, the
power to detect the four genes that had less than four
rare causal mutations was null, and the power to detect
the five larger genes that contained more mutations was
driven by the detection of the genes KDR and FLTI.
These two genes contain a range of causal mutations
(from 0.07% to 16%), supporting our strategy, which is
based on the combined analysis of both rare and com-
mon variants.

In this study we used Fisher’s method to combine p-
values from rare and common variant analyses. This
approach does not take into account potential linkage
disequilibrium between rare and common variants; how-
ever, the type I error rate of the combined test was not
inflated in these data. Other strategies based on permu-
tation analysis can be defined to compute p-values of
the combined test when linkage disequilibrium is
expected.

We compared two thresholds of 1% and 5% for the FT
test, the common variant test, and the combined tests.
We observed a higher power to detect causal genes
when a threshold of 1% was used for the combined test;
this seems to indicate that classical approaches, such as
linear regression, should be preferred to collapsing

approaches when the number of heterozygotes and
homozygotes for the rare allele is large enough. Hence
the choice of the threshold may depend on the sample
size. In this study we analyzed 697 samples, and the
minor allele of a SNP with a MAF of at most 1% would
be found in a maximum of 14 subjects. Analyzing SNPs
with a lower MAF in these data was unreasonable. How-
ever, SNPs with a MAF < 1% can be analyzed using
regression if the sample size is large enough.

We did not use additional functional information of
nonsynonymous SNPs, as proposed by Price et al. [5]
using, for example, PolyPhen [15]. Clearly, because the
data were simulated using PolyPhen, we would expect
an increase in power when incorporating this informa-
tion. Although this method has been described for the
VT test [5], we believe that it can also be added to the
combined test to improve the power.

We used genomic control to correct for inflation of
type I error rate. Other types of correction or adjust-
ment for population stratification that we conducted
(results not shown) were unsuccessful in correcting the
type I error. Whether a similar effect will be seen in real
data is unclear. Although this correction leads to low
power of the rare variant tests, the two causal genes
FLTI and KDR were always in the top 10 of all rare var-
iant tests, including the WE and VT tests. Hence, if the
focus of the study is not association testing but rather a
screening approach to pick up a set of interesting genes,
then these rare variant tests would give results similar
to the combined test in these data.
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Our analysis of the GAW17 data set is far from
exhaustive. Multiple correlated phenotypes generated to
represent phenomena of epistasis and gene-environment
interaction are present in this simulated data set. Exten-
sion of the combined common and rare variant testing
procedure to accommodate information on correlated
phenotypes and environmental exposures would be of
interest.

Conclusion

The analysis of these simulated data shows that classical
approaches, such as linear regression testing common
variants, were able to capture more of the association
signal between causal genes and the trait of interest
than the rare variant tests alone, which was null in all
situations we considered. However, combining the asso-
ciation signal from rare and common variants within
each gene using Fisher’s method can slightly increase
the power to detect the causal genes. The highest power
was observed when we combined the minimum p-value
from the common SNPs and the fixed threshold test of
rare SNPs while using a MAF of 1% to separate the rare
from the common variants. Nevertheless, considering
the low power of the rare variant methods in these data
and the strong correction that was applied to all tests to
correct the inflation of the type I error rate, the small
increase in power that we observed in these data needs
to be considered with caution, and more research in this
domain is clearly warranted.
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