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Abstract

Although genome-wide association studies have uncovered variants associated with more than 150 traits, the
percentage of phenotypic variation explained by these associations remains small. This has led to the search for
the dark matter that explains this missing genetic component of heritability. One potential explanation for dark
matter is rare variants, and several statistics have been devised to detect associations resulting from aggregations
of rare variants in relatively short regions of interest, such as candidate genes. In this paper we investigate the
feasibility of extending this approach in an agnostic way, in which we consider all variants within a much broader
region of interest, such as an entire chromosome or even the entire exome. Our method searches for subsets of
variant sites using either Markov chain Monte Carlo or genetic algorithms. The analysis was performed with
knowledge of the Genetic Analysis Workshop 17 answers.

Background
The modern genomics era holds forth promise of great
advances in terms of our understanding of the genetic
causes of disease. The ability to interrogate orders of mag-
nitude more data than what was previously available has
indeed led to a rapid increase in the rate at which we
uncover variants, such as single-nucleotide polymorphisms
(SNPs), that are associated with phenotypes. For example,
a meta-analysis of height has led to the discovery of about
50 associated variants (see [1] and refs therein). However,
the total variance explained by those variants is 5%,
whereas from empirical observation we know that herit-
ability of height is about 80%. This somewhat depressing
scenario has been repeated in many disease studies (in
which the sample sizes are typically much smaller than
was the case for height) and has led to the adoption of the
term dark matter to describe this phenomenon [2].

Dark matter is the purported explanation for the miss-
ing genetic heritability of phenotype. One potential form
of dark matter is rare variants [3]. Modern so-called
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SNP-chip platforms (e.g., llumina or Affymetrix technol-
ogies) were designed, with good reason, to use only com-
mon SNPs. This design is likely to give the greatest cost
efficiency in terms of gathering as much data as possible
given the physical and/or financial restraints in play.
However, it also means that if disease phenotypes are in
large part due to the presence of collections of rare var-
iants, the so-called multiple rare variants (MRV) hypoth-
esis, then such platforms are likely to have low utility for
detecting these associations. Of course, it is also possible
that dark matter is in fact just lack of power (e.g., as a
result of our poor ability to detect interactions), but in
this paper we focus on the first possible explanation by
analyzing the Genetic Analysis Workshop 17 (GAW17)
data [4] and searching for MRVs.

We focus on methods in which scores are calculated
for aggregations of SNPs. Several score statistics have
been proposed (see Methods section), but all have been
applied in contexts in which a relatively small region of
interest (say, a gene) is under consideration. In this appli-
cation we seek to extend the application of such statistics
to larger contexts. We do this by applying optimization
algorithms to detect appropriate subsets of the set of all
possible SNPs. We then apply these methods to the
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GAW17 data, for the quantitative trait data, assessing sig-
nificance of results by means of permutation tests.

Methods

Score statistics

We focus on three score statistics. First, we consider the
statistic or 1, motivated by Li and Leal [5], in which the
score of a set of SNPs S = {S, ..., S,;} for individual I is
defined to be the total count of mutant alleles summed
across those SNPs for I. Second, we consider the statistic
omp, Which follows Madsen and Browning [6] in that the
contribution to the score from each SNP is weighted by
the inverse of the frequency of its minor allele in the
sample. Third, we consider a novel statistic, Gy, which
weights the count of mutant alleles for a SNP by the mar-
ginal effect size of that SNP, estimated either by log odds
ratio for a binary trait or by the coefficient in the univari-
ate linear regression for a quantitative trait.

Optimization algorithms

Traditionally, score statistics are applied to predetermined
small regions of interest, and all SNPs contained in that
region are included in the evaluation of the score statistic.
It would be useful to be able to extend the region of search
so that the analysis might be more agnostic regarding what
is being searched for. For example, we might consider a
region defined as all genes in a given pathway. To explore
the computational limits to this approach, we use a chro-
mosome as a unit corresponding to a “large region.”
Unfortunately, the performance of score statistic methods,
such as those mentioned, is known to deteriorate as the
fraction of nonassociated statistics in the region increases.
For that reason, to extend these methods to wider regions,
we use an optimization method to choose a subset of sta-
tistics for which the score is calculated. For the purposes
of the present study and after some experimentation, we
choose to use subsets of fixed size: 20 SNPs. We compare
results for two optimization methods: the Markov chain
Monte Carlo (MCMC) method and genetic algorithms
(GAs).

In our MCMC implementation we run five chains in
parallel (Metropolis coupled MCMC). The MCMC pro-
cess depends crucially on its proposal kernel, the rule by
which SNPs are added or removed from the set of SNPs
currently under consideration. Here, we use a kernel that
samples SNPs with a probability proportional to their
association with the phenotype of interest. We use the
square of the Pearson correlation coefficient as the mea-
sure of association between score statistic and phenotype.
For mathematical convenience, we assume that the resi-
duals of the three quantitative trait loci (Q1, Q2, and Q4)
are normally distributed after model fitting and that
there is a linear relationship between the value of the
score statistic and the mean trait value. This allows us to
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approximate the likelihood term contained within the
Hastings ratio as a function of the correlation coefficient
between score and trait; otherwise, the likelihood term
would be intractable.

Each run of the MCMC process results in a posterior
distribution for the inclusion of each SNP in the subset
of SNPs that is used to calculate the score. Therefore
these SNPs may be associated with the phenotype of
interest. To make this more directly comparable with
GAs, which search for a single, optimal subset, we also
record the single best solution discovered in each run.
This also allows for simple compilation of results across
replicates when we report summaries of our results.

For GAs, populations of “chromosomes” evolve in a con-
text in which their fitness is measured by their ability to
predict the phenotype of interest. Here, the chromosome
simply defines a subset of SNPs, and fitness is measured as
a function of the Pearson correlation coefficient between
the score and the quantitative trait for those SNPs. The
chromosomes evolve subject to mutation and recombina-
tion; the identity of the SNPs contained in each chromo-
some (and hence used when the score is calculated)
changes. Probability of reproduction is proportional to fit-
ness, thus encouraging the more successful chromosomes
to have more “offspring.” A full description of GAs is not
possible given the space constraints here, but see Mitchell
[7] for a more comprehensive introduction.

Assessment of significance

In all cases we assess significance of overall fit by creating
1,000 data sets in which the phenotype is randomly per-
muted to determine the null distribution of the best-
performing score statistic at the end of the analysis. To
assess whether we are finding the functional SNPs or
regions, we also report the frequency with which SNPs
were included in the optimal solution, accumulated
across all 200 phenotype replicates.

Results

Inflated type | error rates

We begin by running our analyses on entire chromo-
somes, one chromosome at a time. Empirical p-values
for overall model fit are obtained as described in the
“Assessment of Significance” subsection and are shown
in Table 1 for the MCMC analysis (see the column for
unadjusted results), and in Table 2 for the GA analysis
(again, see the unadjusted column in the table). For con-
venience, results for chromosomes containing SNPs that
are directly associated with the corresponding trait (per
the GAW17 answers) are shown in boldfaced text. The
results are similar for all three statistics we considered,
so here and throughout the manuscript where results
for just one statistic are presented, we show results for
the Madsen-Browning statistic (o) only.
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Table 1 MCMC analysis: chromosome-wide p-values

Q1 Q2 Q4
Chromosome Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted
1 0.020 0.148 0.688 0.594 0.061 0213
2 0.001 0.285 0.217 0.348 0.542 0403
3 0.026 0.240 0.117 0.811 0.810 0.593
4 0.002 0414 0.191 0.183 0.202 0.641
5 0.008 0.841 0.050 0.658 0.544 0.038
6 0.002 0.014 0.187 0.050 0.002 0.022
7 0.001 0.017 0.003 0.459 0.507 0.333
8 0.044 0.164 0.068 0.939 0351 0.875
9 0.022 0232 0.174 0.869 0.001 0.124
10 0.002 0.844 0.183 0.390 0.586 0.532
1 0.002 0.223 0.601 0.874 0.266 0.357
12 0.010 0.267 0.310 0.692 0.551 0.235
13 0.001 0.001 0.097 0.047 0.266 0.707
14 0.001 0.006 0.64 0.832 0.551 0.808
15 0.140 0.563 0.923 0.663 0.006 0.571
16 0.016 0.229 0.198 0.190 0.269 0.245
17 0.008 0464 0.499 0.694 0.355 0.680
18 0.004 0.037 0.945 0.958 0.033 0.046
19 0.001 0.034 0519 0.368 0514 0570
20 0.904 0.003 0.053 0.586 0.034 0.224
21 0.597 0611 0.076 0.552 0.015 0.064
22 0.002 0.633 0.170 0.831 0.008 0.628

Chromosome-level p-values for each quantitative trait using the Madsen-Browning statistic, replicate 1. Results are shown before (unadjusted) and after
(corrected) PC correction for population stratification. Results for chromosomes containing SNPs that are directly associated with the corresponding trait (per the

GAW17 answers) are shown in boldface.

The most striking feature of the results is a grossly
inflated type I error rate. To further demonstrate this
issue and to demonstrate the degree to which it is repro-
ducible across replicates, we present quantile-quantile
(Q-Q) plots for replicates 1 and 2 for results from the
MCMC analysis in Figures 1 and 2. (Results from the GA
analysis were similar and so are not shown.) We see a
clear inflation of type I error across both replicates, most
strikingly for Q1 but also for Q2 and, in replicate 1 only,
Q4, which has no direct association with any SNP in this
data set. The difference between the results for replicates
1 and 2 for Q4 is striking because this is essentially sto-
chastic noise (the replicates are independent, identically
distributed realizations of the same disease model simula-
tion with exactly the same SNP data).

These results clearly indicate the need for correction
for inflated type I error, which is likely partly the result of
population stratification. For this reason, we adjust for
population structure using principal components (PCs).
After exploring a range of the possible number of PCs to
include in the analysis, we determined that 10 PCs per-
form well in terms of reducing the inflation of type I
error, and so all further results in this paper show results
obtained after regressing out the first 10 PCs. Overall p-

values for model fit across each chromosome are shown
in Table 1 (see the adjusted column), and we show Q-Q
plots for the PC-adjusted MCMC results in Figure 3.
Although the Q-Q plots for replicate 1 now look more
satisfactory, with the null trait, Q4, looking suitably uni-
form (although Q1 is still highly inflated), we note that
these results vary a good deal across replicates. For exam-
ple, Q2 shows some inflation of -log p-values after PC
correction in replicate 2 (see Figure 2), and because Q2
should show association with some of the SNPs in the
data, this may well prove to be a better outcome than
what we see in replicate 1, which most likely indicates a
loss of power. However, because we wish to avoid mining
the data—choosing a different number of PCs for each
replicate (this is computationally intractable in the time
available anyway)—for the results shown we analyze each
of the 200 replicates after adjusting for population strati-
fication using 10 PCs.

What SNPs are detected?

Tables 1 and 2 report p-values for the overall fit of the
model on each chromosome, but they do not indicate
whether we are actually finding the causal SNPs. To
assess this, in Tables 3 and 4 we consider the results of
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Table 2 GA analysis: chromosome-wide p-values

Q1 Q2 Q4
Chromosome Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted
1 0.018 0.506 0.385 0632 0.149 0.015
2 0.001 0.001 0.311 0.401 0.137 0.769
3 0.017 0912 0.235 0.958 0.364 0371
4 0.006 0.021 0.054 0.726 0.136 0.089
5 0.002 0.128 0.041 0.947 0.082 0.067
6 0.001 0.003 0.169 0.209 0.019 0.013
7 0.002 0.070 0.067 0.665 0.017 0422
8 0.258 0.140 0.646 0.473 0.078 0220
9 0.017 0.124 0.124 0.103 0.065 0.061
10 0.196 0.003 0.174 0.434 0.042 0.362
1 0.006 0.032 0.609 0.869 0.190 0.702
12 0.017 0.073 0.393 0.730 0.167 0.178
13 0.001 0.002 0482 0.568 0427 0.060
14 0.002 0.001 0.958 0.404 0.295 0.160
15 0.541 0.266 0422 0.269 0.254 0.579
16 0.156 0401 0.280 0.364 0.235 0.643
17 0.588 0403 0.619 0.966 0.509 0.598
18 0.012 0.056 0417 0.840 0464 0670
19 0.067 0.014 0.262 0554 0.041 0479
20 0.152 0.006 0.048 0.204 0.054 0.136
21 0.663 0.073 0.006 0.250 0.088 0.065
22 0.004 0.062 0.127 0.108 0.072 0.095

Chromosome-level p-values for each quantitative trait using the Madsen-Browning statistic, replicate 1. Results are shown before (unadjusted) and after
(corrected) PC correction for population stratification. Results for chromosomes containing SNPs that are directly associated with the corresponding trait (per the

GAW17 answers) are shown in boldface.

an independent analysis of each of the 200 replicates of
the GAW17 data and report the p-values resulting from
a chi-square test for nonrandom association between
those SNPs that were included in the best aggregation of
SNPs found by our MCMC (Table 3) and GA (Table 4)
analysis (20 SNPs for each replicate) and those that were
actually causal (assessed by referencing the GAW17

answers). Analysis was performed after correction for
population stratification using 10 PCs. Of course, we can-
not expect to necessarily detect a causal SNP, because
any other SNP in perfect linkage disequilibrium will
serve just as well in our score statistic and other SNPs in
high linkage disequilibrium might also be detected
instead. Despite these practical realities, we see that,

o

R

Figure 1 MCMC results: Q-Q plots of chromosome-wide p-values for replicate 1. x-axis: expected —log;qp. y-axis: observed —log;qp.
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Figure 2 MCMC results: Q-Q plots of chromosome-wide p-values for replicate 2. x-axis: expected —log;gp. y-axis: observed —log;op.
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although results do vary from chromosome to chromo-
some, we do frequently (but not always) observe a signifi-
cant tendency to preferentially include causal SNPs for
analyses in which significance was observed at the chro-
mosomal level (cf. p-values in Tables 1 and 2).

lllustrative results

Having investigated the issue of type I error rates and
having made some attempt to mitigate its effects, we now
show illustrative results for particular chromosomes of
interest. Space prohibits including a large number of
examples, so we instead provide results for analysis of Q1
on three chromosomes: 1, 13, and 21. Chromosome 13
contains a region with large effect, so we might hope to
see a strong signal. Chromosome 1 contains two SNPs
affecting Q1, and chromosome 21 contains no associated
SNPs. Results for the MCMC analysis are shown in
Figure 4 and those for the GA analysis are shown in
Figure 5. We see qualitatively different behavior, with a
clear peak being seen on chromosome 13 but not on

chromosome 1 or 21. Furthermore, the signal appears to
be stronger in the MCMC analysis than in the GA analy-
sis. This trend is observed across most analyses. How-
ever, it is important to note that in the analysis in which
we correct for population structure, chromosome 1 does
not attain a significant p-value after the permutation test,
whereas without PC correction for structure, significance
is obtained in most cases. This illustrates a peril of cor-
recting for population structure: If phenotype is also cor-
related with structure, then loss of power can result.

As a further example we show the results of the analy-
sis of Q2 on chromosomes 6, 17, and 21. Again these
chromosomes are chosen because they should have
strong, medium, and no signal, respectively. The results
are shown in Figures 6 and 7. Again, power appears to be
lost because of the correction for stratification, although
the MCMC analysis does appear to find a clear signal for
chromosome 6. Interestingly the GA analysis results for
chromosome 6 before PC correction also show a clear
peak (results not shown).

Figure 3 MCMC results: Q-Q plots of chromosome-wide p-values for replicate 1 after correction for population structure using 10 PCs.

x-axis: expected —log;gp. y-axis: observed —loggp.
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Table 3 MCMC analysis: chi-square test for detection of
causal SNPs

Q1 Q2

Chromosome p-value Chromosome p-value

1 11x107% 2 0

4 15x10°% 3 35x107°

5 17%x107" 6 0

6 0 7 42 %107

13 0 8 77 %107

14 201077 9 46 x 107"

19 85x107" 10 12x107°
12 24 % 107
17 42 %107

We report p-values resulting from a chi-square test for nonrandom
association, across the 200 replicates of the GAW17 data, between those SNPs
that were included in the best aggregation of SNPs found by our MCMC
analysis and those that were actually causal (assessed by referencing the
GAW17 answers). Analysis was performed after correction for population
stratification using 10 PCs.

Finally, we present an illustrative but representative
example of the differences observed between the perfor-
mances of the three statistics. This is shown in Figure 8,
where we see results of the GA analysis of Q2 on chro-
mosome 6. We comment further on this in the Discus-
sion and conclusions section.

Discussion and conclusions

Recently, many methods have been developed that
exploit score statistics to detect associations between
aggregations of (rare) variants and phenotype in an
attempt to uncover at least some of the causes of the
phenomenon of dark matter. However, such methods
have thus far been applied in contexts in which only a

Table 4 GA analysis: chi-square test for detection of
causal SNPs

Q1 Q2
Chromosome p-value Chromosome p-value
1 62x107° 2 34%x 107"
4 0 3 0
5 0 6 0
6 93x107° 7 28 %107
13 0 8 0
14 0° 9 31 % 107"
19 25x10% 10 0
12 521077
17 13%x 107"

We report p-values resulting from a chi-square test for nonrandom
association, across the 200 replicates of the GAW17 data, between those SNPs
that were included in the best aggregation of SNPs found by our GA analysis
and those that were actually causal (assessed by referencing the GAW17
answers). Analysis was performed after correction for population stratification
using 10 PCs.

@ For the Q1-chromosome 14 combination, there was a significant tendency
to miss the causal SNPs.
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relatively narrow region of interest is being investigated
and, typically, all SNPs contribute to the score (subject
to inclusion criteria such as thresholds based on minor
allele frequency, for example). It would be of great use
to have similar approaches that are more agnostic in
nature and that explore entire chromosomes, or ideally
genomes, to detect subsets of SNPs for which a signifi-
cant association between phenotype and score is
obtained when a score is calculated in a manner analo-
gous to the existing methods for narrow regions.

The problem, of course, is the sheer magnitude of the
number of possible subsets one might consider. It is
impossible to explore the space of all possible subsets
exhaustively. For that reason, some sort of guidance is
needed. Here, we use two search algorithms: GAs, which
are designed to find optimal solutions in a complex state
space; and MCMC, which is designed to calculate poster-
ior distributions defined over complex state spaces.

The GAW17 data set proved troublesome for all groups
to analyze, in large part because of the extremely high type
I errors. To some degree this remained an issue even after
adjustment for population structure, as is the case in our
own analysis. As such, power is low across the board, and
this means that it is hard to draw meaningful conclusions
regarding the relative merits of alternative methods. This
is the case with our own analysis. Optimization with the
MCMC method appears to perform better than that with
GAs in general, but it is not clear whether this might be
due to the particular way in which the GA was implemen-
ted (perhaps longer runs or use of different evolutionary
parameters might improve performance) or whether it is a
consequence of particular features of the data.

Our experience in the current setting is that attempting
to search across the entire genome or the portion of the
exome included in the GAW17 data has proved unsuc-
cessful. Even with the reduced size of the GAW17 data
compared to what would be obtained in a full exome- or
genome-wide next-generation sequencing study and
given the consequent lower dimension of the state space
over which the selection of SNPs needs to be optimized,
in general we could not find meaningful optima [results
not shown]. For that reason we focus in this paper on
results for chromosome-wide analysis.

When we use the chromosome as the unit of analysis,
the results are encouraging in the sense that we tend to
obtain more significant results on chromosomes on
which associated SNPs are found. However, once a chro-
mosome has been identified as containing an association
with phenotype, the key question becomes which (set of)
SNPs are driving the association? As we have shown in
the illustrative results in this paper, although sometimes
clear signals are found (e.g., for Q1 on chromosome 13),
in other cases there is no clear signal to show which
SNPs are associated (e.g., for Q2 on chromosome 17).
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Figure 4 MCMC results for analysis of quantitative trait Q1. Histogram showing the frequency with which each SNP was included in the
subset of SNPs on which the optimal score statistic was calculated, aggregated across all 200 replicates. Results are for chromosome 1 (top),
chromosome 13 (middle), and chromosome 21 (bottom). The x-axis indexes the SNPs on the given chromosome (each bar corresponds to a
single SNP; bars are equally spaced for clarity). The y-axis shows the frequency with which the SNP was included in the optimal solution. Red x's
indicate positions of SNPs that are associated with the trait (according to GAW17 answers).

This problem was likely worsened by the problems with ~ sometimes even when significance was not obtained at
type I error, which drastically curtailed overall power.  the chromosomal level.

However, in Tables 3 and 4 we show a significant ten- As the size of region being considered grows larger, it
dency to pick out the truly associated SNPs in cases in  becomes imperative to find some other way of guiding
which the chromosome-wide p-value is small and the search for optimal subsets of SNPs. One potential
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Figure 5 GA results for analysis of quantitative trait Q1. Histogram showing the frequency with which each SNP was included in the subset
of SNPs on which the optimal score statistic was calculated, aggregated across all 200 replicates. Results are for chromosome 1 (top),
chromosome 13 (middle), and chromosome 21 (bottom). The x-axis indexes the SNPs on the given chromosome (each bar corresponds to a
single SNP; bars are equally spaced for clarity). The y-axis shows the frequency with which the SNP was included in the optimal solution. Red x's
indicate positions of SNPs that are associated with the trait (according to GAW17 answers).

approach is to include external information regarding the search algorithms and thereby allow for more suc-
which SNPs are most likely to be informative. For exam-  cessful optimization over larger regions.

ple, one might include functional information from exter- Another issue with methods that search across a large
nal databases. This should improve the performance of state space of potentially informative variation is the
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Figure 6 MCMC results for analysis of quantitative trait Q2. Histogram showing the frequency with which each SNP was included in the
subset of SNPs on which the optimal score statistic was calculated, aggregated across all 200 replicates. Results are for chromosome 6 (top),
chromosome 17 (middle), and chromosome 21 (bottom). The x-axis indexes the SNPs on the given chromosome (each bar corresponds to a
single SNP; bars are equally spaced for clarity). The y-axis shows the frequency with which the SNP was included in the optimal solution. Red x's
indicate positions of SNPs that are associated with the trait (according to GAW17 answers).

issue of overfitting. In this paper we guard against this
in two ways: by using fixed-size subsets of SNPs and by
assessing significance by means of a permutation test. A
further response to this issue would be to use shrinkage
methods, such as penalized regression, to reduce the

number of variables, in our case SNPs, that might be
included in the optimal subset. We intend to explore
this approach in future work.

Finally, we see some evidence that the novel score sta-
tistic we propose in this paper may prove to be more
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single SNP; bars are equally spaced for clarity). The y-axis shows the frequency with which the SNP was included in the optimal solution. Red x's
indicate positions of SNPs that are associated with the trait (according to GAW17 answers).
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powerful than existing statistics (see Figure 8). Rather
than concluding anything regarding the relative merits
of the statistics considered here, which is impossible
given the focus on the GAW17 data in particular, we

note that optimal construction of a score statistic is still
an open question and is worthy of further investigation.

In summary, although our results are somewhat preli-
minary, in that the conclusions are based on a single
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Statistic 1

Statistic 2

Statistic 3

Figure 8 Example of differing results from the three statistics. Histograms showing the frequency with which each SNP was included in the
subset of SNPs on which the optimal score statistic was calculated, aggregated across all 200 replicates. Results are for the GA analysis of Q2 on
chromosome 6. Results are for oy, (top), oug (Middle), and oye (bottom). The x-axis indexes the SNPs on chromosome 6 (each bar corresponds
to a single SNP; bars are equally spaced for clarity). The y-axis shows the frequency with which the SNP was included in the optimal solution.
Red x's indicate positions of SNPs that are associated with the trait (according to GAW17 answers).
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data set, at least in terms of the genotype data, we
believe that they do show the potential of using optimi-
zation approaches to extend existing score-based meth-
ods over wider regions than those currently considered.
Selection of a subset of SNPs within a region should les-
sen the existing tendency for the performance of such
methods to deteriorate as the number of nonassociated
SNPs in the region of interest increases. In traditional
analyses this occurs because such SNPs are always
included in the calculation of the score statistic, whereas
by choosing a subset of SNPs, such statistics will be
excluded, if the method is working well, leading to an
expected increase in power.
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