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Abstract

Genetic association studies usually involve a large number of single-nucleotide polymorphisms (SNPs) (k) and a
relative small sample size (n), which produces the situation that k is much greater than n. Because conventional
statistical approaches are unable to deal with multiple SNPs simultaneously when k is much greater than n, single-
SNP association studies have been used to identify genes involved in a disease’s pathophysiology, which causes a
multiple testing problem. To evaluate the contribution of multiple SNPs simultaneously to disease traits when k is
much greater than n, we developed the Bayesian regression with singular value decomposition (BRSVD) method.
The method reduces the dimension of the design matrix from k to n by applying singular value decomposition to
the design matrix. We evaluated the model using a Markov chain Monte Carlo simulation with Gibbs sampler
constructed from the posterior densities driven by conjugate prior densities. Permutation was incorporated to
generate empirical p-values. We applied the BRSVD method to the sequence data provided by Genetic Analysis
Workshop 17 and found that the BRSVD method is a practical method that can be used to analyze sequence data
in comparison to the single-SNP association test and the penalized regression method.

Background
Association studies usually involve a large number of sin-
gle-nucleotide polymorphisms (SNPs) (k) and a relatively
small number of samples (n). To avoid multiple testing
problems and to consider the effect of multiple SNPs
simultaneously, investigators need statistical models that
will test multiple SNPs simultaneously. Because standard
statistical methods are unable to analyze multiple SNPs
simultaneously when k is much greater than n, Tibshirani
[1] introduced the penalized regression (PR) method as an
alternative. The method reduces the size of SNP coeffi-
cients by treating the coefficients with little effect as zero.
In other words, only those SNPs that significantly improve
prediction are kept in the model. A potential drawback of
this method is that a SNP with a strong marginal effect

might be removed from the model if some other SNPs can
explain the effect. A second drawback is that the number
of SNPs evaluated in the model is controlled by the chosen
penalization parameter. Even though the PR method does
evaluate multiple SNPs simultaneously when k is much
greater than n, the maximum number of SNPs that can be
evaluated in the model is limited by sample size; that is,
the method usually cannot test all SNPs simultaneously in
large-scale genetic association studies, such as genome-
wide association studies.
To evaluate all SNPs simultaneously in one statistical

model, we introduced the Bayesian classification with sin-
gular value decomposition (BCSVD) method [2]. The
BCSVD method can be applied to a dichotomous response
variable when k is much greater than n. The method
achieves a massive dimension reduction by applying singu-
lar value decomposition to the design matrix in a binary
probit model; it estimates the effect of SNPs through the
reduced model. Selection of significant SNPs can be
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achieved by using the empirical p-values obtained from
permutation. The BCSVD method handles small sample
sizes quite well.
To analyze quantitative traits when k is much greater

than n, we further developed the Bayesian regression
with singular value decomposition (BRSVD) method. We
applied the BRSVD method to the sequence data pro-
vided by Genetic Analysis Workshop 17 (GAW17). We
show that the BRSVD method is a practical method that
can be used to analyze sequence data by comparison to
the single-SNP association test and PR methods.

Methods
BRSVD method
Let us consider the standard regression model in the
matrix form:

y X N In= +b e e s, ~ ( , ),0 2 (1)

where yn×1 is a vector of quantitative dependent vari-
ables, Xn×k is the design matrix, bk×1 is a vector of para-
meters to be estimated, In is an n × n identity matrix,
and s2 is an unknown variance; as before, k and n are
the number of SNPs and the number of samples,
respectively. By applying singular value decomposition
(SVD) to the design matrix X′ = ADF′, the model in Eq.
(1) with the SVD of X can be written:

y X FDA L= + = ′ + = +b e b e g e (2)

where L = FD and:

g bn n p pA× × ×= ′1 1. (3)

As in Kwon et al. [2], we call g a superfactor vector
because it is expressed as a linear combination of the
original parameters b. The statistical inference will be
held on the superfactor vector instead of on b. From Eq.
(2), the likelihood function of y given (g, s2) can be
obtained as:
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where:

V y L y L1 = − ′ −( ) ( )g g (5)

and ĝ is the maximum-likelihood (or least-squares)
estimator of g. Let us choose prior densities for (b|s2)
and s2 as:

b s b s2 2( ) ~ ( *, )N m Ip (6)

and

s 2 ~ ( , ),{ }IG a b SK: Need ’~’ (7)

where IG is the inverted gamma distribution and (b*,
m, a, b) are known hyperparameters. Because g = A′b,
the conjugate prior density on b implies the conjugate
prior density on g so that:

g s b s b s2 2 2( ) ′ ′ = ′~ ( *, ) ( *, ).N A m AA N A m In (8)

Thus the prior density on (g, s2) can be expressed as:
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The joint posterior distribution for (g, s2) can be
obtained by multiplying the likelihood function in Eq.
(4) to the prior density in Eq. (9):
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The marginal densities for g and s2 can be obtained by
integrating Eq. (10) with respect to s2 and g, respectively.
Given the observed data, the marginal posterior density
for g is a multivariate Student’s t distribution in which
each element is a Student’s t distribution with (n + a)
degrees of freedom and the marginal density for s2 is:

IG
n a Q+⎛
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With these posterior distributions, the g can be esti-
mated through a Markov chain Monte Carlo simulation
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with Gibbs sampler, which starts with the maximum-
likelihood estimate. To transform the superfactor vector
(g) in Eq. (2) back to b, which is our original parameter
of interest vector, we use the most general solution
form for the linear equation (g = A′b) and achieve the
unique solution for b by choosing the generalized
inverse of A′ as A [3]. We use a permutation test to esti-
mate the significance of the SNP effects on the pheno-
type. Let ˆ ( , , )b i i k= 1 be the estimate of the ith SNP
effect from the raw data, and let ˆ ( , , )b i

j j J= 1 be the
estimate of the ith SNP effect from the jth shuffled data
that were obtained by permuting the quantitative trait
(y). Define b i

dj as the difference between b̂ i and
ˆ ( ˆ ˆ )b b b bi
j

i
dj

i i
j= − . Then the test statistic can be

defined as:

Λ i
i
d

i
d= b

bSE( )
, (17)

where b i
d is the sample mean of b i

dj and SE( )b i
d is

the standard error of b i
d . Under the null hypothesis

(H0: bi = 0), the statistic Λi follows the standard normal
distribution when J is large:

Λ i N i k~ ( , ) ( , , ).0 1 1=  (18)

Study sample and association analysis
We used the unrelated individuals data distributed by
GAW17, which includes 697 individuals, 24,487 SNPs,
and 3 covariates (sex, age, and smoking status). We ana-
lyzed the first 10 replicates of phenotypes for quantita-
tive risk factor Q1. We first performed the single-SNP
association test using the simple linear regression model
option in PLINK [4]. Second, we applied the PR method
with L1 penalty introduced by Tibshirani [1] using the
R package monomvn [5]. We evaluated SNP association
with Q1 within the maximum number of SNPs allowed
by the package in each step, which is min(k, n − inter-
cept). Because the package does not provide p-values,
we used the same permutation technique as in the
BRSVD method to obtain empirical p-values. Third, we
implemented the BRSVD method. To define significant
SNPs for each method, we considered the following sta-
tistical models: quantitative risk factor Q1 versus the
single SNP and the three covariates for the single-SNP
association test; quantitative risk factor Q1 versus the
maximum number of SNPs allowed by the package plus
the three covariates for the PR method; and quantitative
risk factor Q1 versus all SNPs (24,487) and the three
covariates for the BRSVD method. All SNPs identified
as significant for each model were compared to the 39
SNPs listed in the answer sheet distributed by GAW17.
The analyses were run for each of the first 10 replicates,

and the average of the 10 replicates was summarized
(see Results section).

Results and discussion
Single-SNP association
Using a p-value less than 10−5, which is an approximate
value of 0.05 genome-wide level using Bonferroni cor-
rection, as the cut point, the single-SNP test identified
age and 50 SNPs as the risk factors for Q1 (Figure 1).
By comparison with the answer sheet distributed by
GAW17, which listed 39 SNPs that were associated with
Q1, only 2 SNPs (C13S522 and C13S523) out of the 50
were correctly identified.

PR method
The results from the PR method are shown in Figure 2.
With the cut point of p = 0.05 (i.e., −log10(p) = 1.3), age
was again identified as a risk factor for Q1. In addition,
15 SNPs were also found to be significant. However,
only 3 SNPs (C13S523, C13S522, and C4S1884) out of
the 15 were on the 39 risk SNPs list.

BRSVD method
Figure 3 summarizes the association analysis results
using the BRSVD method. We applied the cut point of
p = 0.05 (i.e., −log10(p) = 1.3) because all SNPs were
evaluated in one test. Age and 45 SNPs were found to
be significant. Comparing to the 39 SNPs listed in the
answer sheet, 9 SNPs (C1S6533, C4S1877, C4S1889,
C4S4935, C6S2981, C13S431, C13S522, C13S523, and
C13S524) out of the 45 SNPs were correctly identified.
Table 1 summarizes the validity of the three methods.

The single-SNP association analysis method had a posi-
tive predictive value (PPV) of 4% compared to 18.7% for
the PR method and 20% for the BRSVD method. We
therefore concluded that the single-SNP association ana-
lysis method is less efficient than the other two methods
for identifying the associated SNPs for the quantitative
risk factor Q1. The BRSVD method is slightly better than
the PR method, even though they performed almost at
the same efficiency level of about 20%. Negative predic-
tive values (NPVs) were greater than 99% for all three
methods. This could be explained by the combination of
(1) having a large number of SNPs, most of which are
not associated with the disease, and (2) choosing a strin-
gent selection criterion so that only a few SNPs are
selected. The specificity showed that all three methods
correctly classified more than 99% of the SNPs that are
not significant. The false-positive rate (FPR = 1 − specifi-
city) can therefore be calculated as 0.002 for single-SNP
association, 0.0005 for the PR method, and 0.0015 for the
BRSVD method. However, the sensitivity, which shows
the power of analysis, demonstrates that the BRSVD
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Figure 1 Single-SNP association analysis from PLINK. x-axis: All SNPs on chromosomes 1–22 are numbered from 1 to 24,487. y-axis: −log10(p-
value). The names for the two SNPs that were correctly identified are given.

Figure 2 Association results from the penalized regression method. x-axis: All SNPs on chromosomes 1–22 are numbered from 1 to 24,487.
y-axis: −log10(p-value). The three correctly identified SNPs are given.
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method (23.1%) is considerably more powerful than the
other two methods (5.1% for the single-SNP association
test and 7.7% for the PR method).

Conclusions
We used three different analysis methods (the single-
SNP association analysis method implemented in
PLINK, as widely used in genome-wide association stu-
dies; the PR method; and the BRSVD method) to iden-
tify SNPs that significantly influence the quantitative
trait Q1 using the unrelated-individuals sample provided
by GAW17. Both the PR and BRSVD methods out-

performed the single-SNP association analysis method,
suggesting that evaluating multiple SNPs simultaneously
not only reduced the problems of multiple testing but
also provided more power than single-SNP association
in genetic association studies. The BRSVD method had
a sensitivity almost three times as high as that of the PR
method, suggesting that the BRSVD method is more
optimal than the PR method. Another advantage of the
BRSVD method is that it requires no specification of
parameters compared to the PR method, which requires
specification of the penalization parameter that controls
the number of variables selected. Moreover, the BRSVD

Figure 3 Association results from the BRSVD method. x-axis: All SNPs on chromosomes 1–22 are numbered from 1 to 24,487. y-axis: −log10
(p-value). The nine correctly identified SNPs are given.

Table 1 Summary of validation of the three methods

Empirical outcome

Single-SNP association PR method BRSVD method

Actual outcome E′ (= 50) IE′ (= 24,437) E′ (= 16) IE′ (= 24,471) E′ (= 45) IE′ (= 24,442)

E (= 39) TP = 2 FN = 37 Sen = 0.051 TP = 3 FN = 36 Sen = 0.077 TP = 9 FN = 30 Sen = 0.231

IE (= 24,448) FP = 48 TN = 24,400 Spe = 0.998 FP = 13 TN = 24,435 Spe = 0.9995 FP = 36 TN = 24,412 Spe = 0.9985

PPV = 0.04 NPV = 0.9984 PPV = 0.187 NPV = 0.9985 PPV = 0.2 NPV = 0.9988

Empirical analysis results for the three methods. E is the number of SNPs that are truly effective, IE is the number of SNPs that are ineffective). E` is the number
of SNPs that are empirically effective, IE is the number of SNPs that are ineffective); TP, true positive; FP, false positive; FN, false negative; TN, true negative; PPV,
positive predictive value; NPV, negative predictive value; Sen, sensitivity; Spe, specificity.

Kwon et al. BMC Proceedings 2011, 5(Suppl 9):S57
http://www.biomedcentral.com/1753-6561/5/S9/S57

Page 5 of 6



method takes much less computing time than the PR
method does. For the association analysis of Q1 in the
GAW17 unrelated individuals data, the PR methods
used about 1.5 times as much run-time as the BRSVD
method. With all factors considered, we believe that the
BRSVD method is a good choice for large-scale genetic
association study for quantitative traits.
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